
Increasing Genetic Programming Robustness using Simulated
Dunning-Kruger Effect

Thomas D. Griffiths
grifftd1@aston.ac.uk

Aston Lab for Intelligent Collectives Engineering (ALICE)
Aston University, Birmingham B4 7ET, U.K.

Anikó Ekárt
a.ekart@aston.ac.uk

Aston Lab for Intelligent Collectives Engineering (ALICE)
Aston University, Birmingham B4 7ET, U.K.

ABSTRACT
Robustness is a key characteristic of genetic programming candi-
date solutions, providing the ability to maintain a satisfactory level
of performance under dynamic and uncertain environments. In this
paper we perform experiments on Tartarus problem instances[2]
exploring the hypothesis that the introduction of a fitness distribu-
tion bias, inspired by the Dunning-Kruger effect [5], will lead to an
increase in the diversity and robustness of candidate solutions.
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1 INTRODUCTION
The prevalence of candidate solutions prematurely converging to
sub-optimal performance is an ever-present issue in the field of
Genetic Programming. A population is said to have converged
when the level of diversity present in the population collapses to
near-zero and there is no increase in fitness score throughout a
generation. Without the proper application of genetic operators or
heuristic intervention, it is unlikely that the population will recover
from this drop in diversity [3]. It is hypothesised that through the
manipulation of fitness value distributions, it will be possible to
increase the level of diversity present in the population.

2 POPULATION ROBUSTNESS
Robustness is often referred to as a characteristic of a candidate
solution whose performance is not diminished despite changes in
environmental parameters or constraints.
A solution that does not lose its utility or performance quality under
these changes is said to be robust [1]. Robustness can be broadly
classified into two groups:
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- Phenotypic robustness – the number of unique genotypes that map
to a given phenotype, and,
- Genotypic robustness – the likelihood that a genotype will produce
the same phenotype under single-point mutation.
Figure 1 illustrates the relationship between genotypes and pheno-
types in a two-dimensional representation of a geno-pheno space,
showing 6 phenotypes, Pa−f and 2 genotypes, G1−2.
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Figure 1: Hypothetical Geno-Pheno Space.

2.1 Phenotypic Robustness
The robustness of a phenotype is analogous to the size of its geno-
type network, defined as the number of unique genotypes present
in the population that map to the given phenotype [4]. A pheno-
type which has a large genotype network is considered to be more
robust than one with a smaller genotype network. This can be
conceptualised as being analogous to the size of the area of the
geno-pheno map occupied by the individual phenotype. It can be
seen in Figure 1 that the phenotypes Pd and Pc occupy a much larger
area of the geno-pheno space than the phenotypes Pe and Pa , and
would therefore be considered to be more robust.

2.2 Genotypic Robustness
Canonical genetic programming genotypes can be compared to
each other in terms of their n-neighbour relationship. For example,
genotypes which have n=1 chromosome difference between them
are said to have a 1-neighbour or 1n relationship, and so forth.
Genotypes with a 1n relationship are said to be adjacent to each
other in the wider geno-pheno space, shown in Figure 1. A genotype
is considered robust if it is able to map to the same phenotype under
the effects of single-point mutation [4], which can be conceptualised
in terms of its neighbour relationships. It is likely that for genotype
G1, the genotypes with a 1n or 2n relationship still map to the
phenotype Pd , known as neutral neighbours.
However, for the genotype G2, which lies closer to the boundaries
between the phenotypes Pe , Pd and Pf , it is more likely that the
genotypes with a 1n or 2n relationship may map to an entirely
different phenotype, known as non-neutral neighbours. The relative
robustness of a genotype can bemeasured by comparing the number
of neutral and non-neutral neighbours [4].
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3 DUNNING-KRUGER EFFECT
The Dunning-Kruger effect is a form of cognitive bias observed in
populations [5]. It is described that individuals with a low level of
ability mistakenly over-estimate their performance and conversely,
individuals with a high level of ability will often mistakenly under-
estimate their performance, as illustrated in Figure 2.

Adapted from Figure 1. J. Kruger and D. Dunning [5]
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Figure 2: Comparison Between Actual & Perceived Scores

3.1 Implementing Dunning–Kruger Bias
We propose that the introduction of a Dunning-Kruger style bias
(DK) into the fitness distribution of a population will enable us
to maintain a higher level of population diversity over time. This
would be achieved by means of modifying the fitness scores of
individuals in the distribution based on their performance relative
to the rest of the population. This is achieved with the lower per-
forming individuals having their reported fitness scores artificially
increased and the higher performing individuals having their re-
ported fitness scores decreased. The reported fitness score of each
individual i is modified at the end of the generation, prior to the
execution of the genetic operators, using the following function:

DKi = Fi ∗ 50 − 0.75p ∗ Fmax − Fmin
2

,

where DKi represents the new biased fitness score and Fi the origi-
nal fitness score for individual i , the constants are linear approxi-
mations of Figure 2, p is the percentile fitness rank of the individual
in the population, Fmin and Fmax are the minimum and maximum
fitness scores found in the population fitness distribution.
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Figure 3: Comparison Between Fitness Distributions
Figure 3 a comparison between the original and DK fitness distri-
butions is shown. In the original distribution, there is a significant
minority of individuals whose performance lies around the me-
dian value, but whom are unlikely to be chosen for recombination;
contributing, in part, to the long-term loss of overall population
diversity. We postulate that the modification of the fitness distribu-
tion will reduce the evolutionary pressure present in the population,
leading to a higher level of long-term diversity. The proposed ap-
proach is similar to that of fitness sharing. However, in contrast
to fitness sharing where the fitness of individuals is modified in
relation to a distance metric or neighbourhood, the fitness value of
DKi is modified based on global performance in comparison to the
rest of the population.

4 RESULTS
A selection of tartarus problem instances, of size 8 × 8 were gener-
ated [2]. A series of experiments were conducted where the instance
was changed during execution, at regular generation intervals:
{10, 20, 50}. This change in environment and instance was used to
assess the robustness of candidate solution to change, the results
of which are shown in Table 1.

Table 1: Average Fitness Comparison for Canonical and DK.
G=10 G=20 G=50

+1 +5 +1 +5 +1 +5
Original -0.959 -0.740 -1.264 -1.087 -1.366 -1.412

DK -0.764 -0.572 -1.258 -0.944 -1.272 -1.173

The change in average population fitness for one generation: +1 and
five generations: +5, after the instance change is shown. It can be
seen that the system utilising DK is able to recover fitness perfor-
mance faster than the canonical system, supporting the supposition
that the introduction of DK leads to an increase in robustness.
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Figure 4: Average Levels of Phenotypic Diversity
Figure 4 shows the average level of phenotypic diversity present
in the population for the canonical and DK systems, calculated
utilising the fitness spread technique, using the true fitness values
present in the population, opposed to the biased DK fitness values.

5 CONCLUSION
In this paper we present a novel approach for increasing the diver-
sity of a genetic programming population, utilising the DK fitness
distribution bias to modify the reported fitness scores of individ-
uals in the population. The results indicate that the modification
of the reported fitness values leads to a small but significant in-
crease in the overall level of diversity present in the population.
We demonstrated that this increase in diversity within the genetic
programming population leads to an increase in the robustness of
the candidate solutions generated. The candidate solutions from the
system utilising the DK bias were able to recover from changes in
the environment, faster and more effectively than the ones without.
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