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ABSTRACT
Multi-objective problems (MOP) are of significant interest to both
multi-criteria decision making (MCDM) and evolutionary multi-
objective (EMO) research communities. A core technique common
in both is scalarization, which combines multiple objectives into
one in a way that solving it provides a solution to the original
MOP. In this paper, we look closely at two scalarization meth-
ods – augmented achievement scalarization function (AASF) and
penalty boundary intersection (PBI). While the former has its roots
in MCDM literature, the latter was developed in EMO field with
focus on decomposition-based algorithms. We observe the conven-
tional limits of the parameters involved in these methods and then
demonstrate that by relaxing those limits one could be made to
behave like the other. The aim is to gain a deeper understanding of
both these measures, as well as expand their parametric range to
provide more control over the search behavior of EMO algorithms.
It also lays groundwork for further development of complete analyt-
ical derivations of equivalence conditions between the two metrics.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making;
ACM Reference Format:
Hemant Kumar Singh and Kalyanmoy Deb. 2019. A Parametric Investigation
of PBI and AASF Scalarizations. In Proceedings of the Genetic and Evolution-
ary Computation Conference 2019 (GECCO ’19 Companion). ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321886

1 INTRODUCTION AND BACKGROUND
Scalarization is commonly used in contemporary EMO algorithms
for approximating the Pareto front using decomposition-based
methods, and in MCDM for arriving at a solution suitable to a
decision-maker. In this study, we attempt to establish the common-
alities in behavior between two oft-used scalarizing measures -
AASF [3] originating from MCDM literature and PBI [4] originat-
ing from EMO literature. Such parallels have not been observed in
literature so far due to a restricted range in which the parameters
of these two metrics are used, the reasons for which lie in their con-
ception. For example, PBI uses a parameter θ to impose a penalty
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term, and therefore is always assumed to be greater than 0 (often set
to 5). AASF uses a parameter ρ which attempts to change the ASF
contours slightly in order to avoid weakly non-dominated solutions;
and hence it is usually restricted to a very small positive value close
to 0 (e.g. 10−4). Although some studies have investigated their para-
metric behavior individually (e.g. [2]), to the authors’ knowledge,
the relations between them have not been studied previously.

To calculate AASF and PBI for a given candidate solution P =
(p1,p2) in the objective space, a reference point Z = (z1, z2) and a
reference vectorw = (w1,w2) are required, such thatw1+w2 = 1.Z
is often chosen as the ideal point formed by they coordinates of best
objective values along each axis. Since the two objectives can be in
different orders of magnitude, it is a common practice to linearly
normalize the objective space between [0,1] before conducting any
distance based calculations, which maps Z to (0,0). With reference
to Fig. 1(a)-(b), AASF and PBI can be calculated as shown in Eq. 1.
The corresponding contours can be visualized in Fig. 1(c)-(d).
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(a) AASF formulation
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(b) PBI formulation
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(c) AASF contours, ρ = 0.1
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(d) PBI contours, θ = 5

Figure 1: Formulation and contours of AASF and PBI
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2 PARAMETRIC STUDY
Let us start by considering the conventional bounds of the two
parameters in their entirety, i.e., θ ∈ [0,∞) and ρ ∈ [0,∞) instead of
only the specific values used in literature. We consider an off-center
reference vector (RV), w = (0.25, 0.75), so that the asymmetric na-
ture of AASF could be accounted for. We refer to the angle made by
the isolines to the RV as ϕ for PBI. For AASF, the contours are asym-
metric about the RV, so we refer to the angle above and below the
RV with respective contour lines ϕa and ϕb respectively. These vari-
ations are shown in Fig. 2. It can be noted that for PBI, ϕ ∈ (0, 90◦],
whereas for AASF, ϕa ∈ [71.6◦, 143◦) and ϕb ∈ [18.4◦, 36.9◦).
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Figure 2: (a) Variation of ϕa ,ϕb with ρ for w = (0.25, 0.75) for
AASF; (b) Variation of ϕ with θ (regardless of w) for PBI

Thus, there exists a range of angles that that could be achieved
by PBI but not AASF, i.e. (0, 18.4◦), and also a range which could
be achieved by AASF but not PBI, i.e., ϕa ∈ (90◦, 143◦), for any
ρ,θ ∈ [0,∞). Therefore, in order to make these two metrics behave
identically, the parameters θ and ρ need to be relaxed beyond their
originally conceived bounds. In Fig. 2(a), it can be seen that if ρ axis
of AASF is allowed to extend below 0, angles of up to ϕa ,ϕb = 0
will be achievable (as the graph is strictly increasing) to match
the PBI. Both ϕa and ϕb go to 0 at ρ = −1/2. Similarly, if θ axis
of PBI is allowed to extend below 0 (Fig. 2(b)), a higher value of
ϕ can be achieved (as the graph is strictly decreasing) to match
AASF behavior. The variations with the extended ranges are shown
in Fig 3. This now makes it possible to consider any value of ρ
in Fig 3(a) and find the corresponding ϕa ,ϕb . Subsequently, the
corresponding values of θa and θb can be determined from Fig 3(b)
and used to calculate an equivalent PBI function that matches the
AASF function contours for the given ρ.

3 PROOF OF PRINCIPLE RESULTS
In order to verify the above way of finding equivalent PBI pa-
rameters (θa ,θb ) for a given AASF parameter ρ, we use the Non-
dominated Sorting Genetic Algorithm III (NSGA-III) [1] framework.
In NSGA-III, the survival in the last non-dominated front (that can
not be contained within the population size N ) is done through
niche preservation operation using reference vectors. The solutions
assigned to any given niche are ranked based on the their closest
perpendicular distance (d2) to the associated reference direction,
and the one with the least d2 is considered the selected point for
that direction. Using this ranking process, the required number of
surviving solutions are selected. To demonstrate the idea discussed
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Figure 3: (a) Variation of ϕ for PBI (b) Variation of ϕa ,ϕb for
w = (0.25, 0.75) for AASF.

above, two simple variants are created: (a) NSGAIII-AASF, where
d2 is replaced by AASF (with a given ρ), and (b) NSGAIII-EPBI,
where an ‘equivalent’ PBI is used with the corresponding θ values
calculated for each reference vector to match the prescribed ρ = 0.1.
Proof of principle results are presented on two ZDT problems [5]
in Fig. 4, where the same final population is obtained using the
above two variants. The behavior is consistent across multiple in-
stantiations. The above parametric study and preliminary results
confirm in principle that it is possible to find settings for which
the two scalarization methods, AASF and PBI, would exhibit the
same type of search behavior. The future work will delve into these
transformations analytically and investigating their utilization for
controlling the search using their entire parametric range.
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Figure 4: Final populations: NSGAIIIAASF and NSGAIIIEPBI
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