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ABSTRACT
This paper studies the Single-Vehicle Cyclic Inventory Routing

Problem (SV-CIRP) with the objective of simultaneously minimizing

distribution and inventory costs for the customers and maximizing

the collected rewards. A subset of customers is selected for the

vehicle, including the quantity to be delivered to them. Simulated

Annealing (SA) is proposed for solving the problem. Experimental

results on 50 benchmark instances show that SA is comparable

to the state-of-the-art algorithms. It is able to obtain 12 new best

known solutions.
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1 INTRODUCTION
In the traditional supply chain context, supplier and customers

independently make their decisions on replenishing the inventory.

Vendor Managed Inventory (VMI) was introduced later [5] to syn-

chronize different activities. The Inventory Routing Problem (IRP),

which is a VMI problem [4], considers both managing the invento-

ries at the customers and distributing products from a central depot
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to the customers. The supplier manages the routing of vehicles dis-

tributing the products and the timely replenishment of inventories

at the customers as well [1]. Cyclic IRP (CIRP) is a variant of IRP

where customer demand rates are stable with an infinite planning

horizon. The main objective is to find a cyclic distribution plan

for a set of customers with the objective of minimizing long-term

transportation and inventory costs [3]. The vehicles are allowed to

perform multiple trips on a single day.

In Single-Vehicle CIRP (SV-CIRP), a special case of CIRP, visiting

all customers is not compulsory and a vehicle is allowed to make

multiple trips from the depot within one cycle. The cycle time rep-

resents the time between two deliveries to each customer. A reward

occurs for each visited customer. The objective is to simultaneously

minimize transportation and inventory costs and maximize the

collected rewards from visited customers [7]. Simulated Annealing

(SA) is designed to solve the problem.

2 THE SV-CIRP
We consider an undirected network graph G = (S+,A), where
S+ = {0, 1, 2, . . . , |S |} is the set of nodes, and A = {(i, j) : i ,
j ∈ S+} refers to the set of arcs connecting two different nodes

i and j. Let S = S+ \ {0} be a set of potential customers. Node 0

represents the depot. Each customer j has an inventory cost ηj
(price/(time×quantity)), a handling cost ϕ j (price), a demand rate

dj (quantity/time) and a fixed reward λj (price/time). The reward

corresponds to the collected profit when the customer is selected

for replenishment. The travel time from customer i to customer j is
represented by ti j . The vehicle is assumed to have a fixed operating

costψ (price/time), a fixed average vehicle speed v (distance/time),

the travel cost δ (price/distance) and the vehicle capacity κ (quan-

tity). It is assumed that each customer has an infinite inventory

capacity. The largest possible quantity that can be delivered to

customer j is denoted as Q j
max

, which is calculated as:

Q j
max = dj ×

κ

minj ∈S {dj }
(1)

The objective is to minimize the total cost minus the total col-

lected reward. The total cost consists of the transportation, delivery

and holding costs. Due to the multiple trips a vehicle can make

during one cycle, each one starting from the depot, the total travel

time per cycle T is determined by the sum of all trip travel times.

Each trip should respect the vehicle capacity.
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3 SIMULATED ANNEALING
We calculate ratioj j′ between nodes j and j ′ (Equation 2), which

represents the collected reward per distance travelled. We then

create a solution representation - a permutation of |S | customers

(Figure 1). Customers are sorted in descending order according to

ratio values, starting from j = 0, until all customers are included.

Since it is not mandatory to visit all customers, we select a subset

of the visited customers, represented by shaded cells in Figure 1.

ratioj j′ =
λj′

tj j′ ×v
∀j, j ′ ∈ S+ (2)

Figure 1: An example of a solution representation

Figure 2: Decoding results (a); final route (b)

The solution representation is decoded into a sequence of possi-

ble visited customers (2(a)). T is determined by finding the lower

and upper bound values,Tmin andTmax [4].Tmin is the total travel

time required to visit all selected customers, while Tmax is calcu-

lated by Equation 3. Let S ′ be the set of selected customers. When

Tmin > Tmax , we recalculate Tmin and Tmax after removing the

customer with the highest demand rate until Tmin < Tmax . The

ideal cycle time (the "economic-order-quantity"),TEOQ [7], is calcu-

lated by Equation 4. There are three possible values ofT :T = TEOQ
if Tmin ≤ TEOQ ≤ Tmax . If TEOQ < Tmin , then T = Tmin . If

TEOQ > Tmax , then T = Tmax . The vehicle starts the delivery

from the depot and sends as much as djT to the selected customer

j. Due to the vehicle capacity constraint, the vehicle may return to

the depot to replenish its capacity and continue the trip, as long

as the total trip time does not exceed T . Figure 2(b) illustrates the
final route. Customers 7 and 3 cannot be visited due to the time

limitation, therefore, they are not shaded.

Tmax =
κ

max j ∈S ′ dj
(3)

TEOQ =

√√√
δ ×v ×Tmin +

∑
j ∈S ′ ϕ j∑

j ∈S ′
dj×ηj

2

(4)

We propose SA with a random neighborhood structure that

features various types of moves: Swap, Insert, Inverse, Remove

and Add. Swap is performed by selecting two customers and ex-

changing their positions. Insert is done by selecting one customer

and inserting it into the position before another randomly selected

customer. Inverse is conducted by selecting two customers and

reversing the positions of customers between them. Add is applied

by selecting one non-shaded customer randomly and converting

it into shaded customer. Remove is the opposite of Add. Other SA

parameters, e.g. initial temperature, are determined to ensure the

solution quality.

4 EXPERIMENTAL RESULTS
Five sets of benchmark instances are available on https://www.

mech.kuleuven.be/en/cib/op#section-35. SA was coded in C++ and

all experiments were executed on a computer with Intel Core i7-

6700 CPU @ 3.40 GHz processor, 16.0 GB RAM. Each instance is

solved five times. The results are compared with the best known

solutions (BKs), taken from state-of-the-art algorithms: the Steepest

Descent Hybrid Algorihm (SDHA) [6], Iterated Local Search (ILS)

[7], Iterated Local Search (ILS) [4] and the convex optimization [2].

Dataset

BKs SA

Average Average Average Average Average New

Cost CPU (s) Cost CPU (s) Gap (%) BKS

Set 1 -346.16 1.6 -346.16 12.8 0.00 0

Set 2 -740.73 144.7 -739.26 18.9 0.21 0

Set 3 -2182.35 1501.2 -2171.97 85.3 0.48 1

Set 4 -1041.24 6097.3 -1057.86 405 -1.46 5

Set 5 -1366.04 5858.9 -1372.32 414.1 -0.39 6

Table 1: Experimental Results

We only summarize the average results in Table 1. For Set 1,

SA is able to obtain the optimal solutions. For Set 2, SA results

are slightly worse than BKs. SA performs better in solving some

instances compared to the results of ILS [4], at the cost of the

computational time. For Set 3, SA performs better than ILS [4] in

solving four instances: A25-1, A25-2, A25-6 and A25-8. SA improves

one best known solution, A25-8. The BKs for Set 4 are obtained by

the convex optimization [2]. SA is able to improve 5 BKs. For Set 5,

SA also improves 6 solutions of the convex optimization. The best

known solutions are further improved by 0.39%, on average, with 6

new BKs.

5 CONCLUSIONS
This work proposes Simulated Annealing to solve the SV-CIRP.

The experimental results show that SA is comparable to the state-

of-the-art algorithms. It finds 12 new BKs. We observe that the

computational time remains limited, especially for larger instances.

Some possible paths for further research include split deliveries

and multiple vehicles.
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