
Investigating the Use of Linear Programming to Solve Implicit
Symbolic Regression Problems

Quang Nhat Huynh
University of New South Wales

Canberra, ACT, Australia
quang.huynh@student.adfa.edu.au

Hemant Kumar Singh
University of New South Wales

Canberra, ACT, Australia
h.singh@adfa.edu.au

Tapabrata Ray
University of New South Wales

Canberra, Australia, ACT
t.ray@adfa.edu.au

ABSTRACT
Approaches that attempt to combine feature selection and symbolic
feature evolution processes have gained popularity in the recent
years to solve symbolic regression problems. However, much of
the existing research is applicable/has been applied to solve explicit
equations (y = f (x)) only, which cannot be directly applied to
discover implicit equations (f (x) = 0). In this paper, we investigate
a potential approach that uses Linear Programming to construct
meaningful implicit equations out of a set of evolving features.

CCS CONCEPTS
• Computing methodologies → Hybrid symbolic-numeric
methods;

KEYWORDS
Symbolic Regression, Linear Programming, Implicit Equation

ACM Reference Format:
Quang Nhat Huynh, Hemant Kumar Singh, and Tapabrata Ray. 2019. Investi-
gating the Use of Linear Programming to Solve Implicit Symbolic Regression
Problems. In Proceedings of the Genetic and Evolutionary Computation Con-
ference 2019 (GECCO ’19 Companion). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3319619.3321889

1 INTRODUCTION
Implicit functions are those with the form of f (x) = 0 and usually
represent complex surfaces [5], partial differential equations [3]
and natural laws [4]. Though explicit equations (y = f (x)) are well
studied in the literature, there exist very limited attempts to solve
implicit equations symbolically. For implicit equations, Genetic
Programming (GP) with Mean Square Error (MSE) fitness can yield
trivial expressions which are zeros for all or most of the dataset,
such as sin2(x) + cos2(x) − 1 or 1/(1000 + x2) [5]. The work in [5]
attempts to solve this issue using a new fitness function involving
partial derivatives in lieu of MSE. However, the application of the
approach is challenging if there are more than three variables in
the dataset and/or the data points are not in spatial or time order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321889

More recent methods for explicit functions combine feature selec-
tion methods such as Least Absolute Shrinkage and Selection Oper-
ator (LASSO) [1] or Mixed Integer Linear Programming (MILP) [2]
with feature evolution processes in the form of GP. Unfortunately,
these approaches are not suited to discover implicit equations as
they always return zeros as the weights of the selected features. In
this paper, we propose a novel approach of using Linear Program-
ming (LP) to search for implicit equations efficiently.

2 PROPOSED APPROACH
2.1 Linear Programming
Our goal is to form an implicit expression which has the minimum
Sum of Absolute Error (SAE), out of a subset of the feature set.
When the output is zero, the SAE is calculated as in Eq. 1.

Minimize
w

∑
i

��∑
j
w jsi j

��, (1)

where si j , i = 1, 2, ...,n, and j = 1, 2, ...,m, denote the output values
ofm features on n given fitness cases andw j indicates the weight
of feature j . At the core of our approach, this minimization problem
is transformed to an equivalent linear formulation shown in Eq. 2
with an extra variable zi , which indicates the difference between
predicted output and the target for data point i .

Minimize
z

∑
i
zi , zi ≥ 0

Subject to: − zi ≤
∑
j
w jsi j ≤ zi

(2)

2.1.1 Avoiding all zero weights. Eq. 2 is not sufficient to prevent
the trivial solution where all the weights w are zeros. Therefore,
an extra constraint is required to prevent this case. Let sr j be the
output of feature j based on a random fitness case where the output
is known to be non-zero in advance. Eq. 3, where c is a preset
constant, will enforce at least one of the weights to be non-zero.
Only one constraint for the positive c is necessary since LP can
simply negate the values of the weights if

∑
j w jsr j turns out to be

negative. ∑
j
w jsr j ≥ c, c > 0 (3)

2.1.2 Linear programming with L1 regularization. Minimizing
only the SAE suffers from many side effects, such as precision error,
too many non-zero weights, etc. A common approach is adding
a L1 norm penalty term to the objective as in Eq. 4 to achieve a
sparse selection effect. λ is the weight of the penalty term. The new

344

https://doi.org/10.1145/3319619.3321889
https://doi.org/10.1145/3319619.3321889

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Investigating the Use of LP for Implicit Symbolic Regression

minimization problem can be transformed to its equivalent LP form
in Eq. 5, where uj denotes the absolute value ofw j .

Minimize
w

∑
i

��∑
j
w jsi j

�� + λ
����w����

1 (4)

Minimize
z

∑
i
zi + λ

∑
j
uj , zi ≥ 0, uj ≥ 0

Subject to: − zi ≤
∑
j
w jsi j ≤ zi

− uj ≤ w j ≤ uj

(5)

2.1.3 Mixed Integer Linear Programming with L0 regularization.
Regularization with L1 norm usually results in the selection of
too many features. In order to determine only a few features to
construct an expression, MILP can be used in conjunction with a
L0 norm penalty. Eq. 6 shows a SAE minimization problem with L0
regularization. It can be transformed to an MILP formulation as in
Eq. 7, where tj is a binary variable indicating if feature j is selected,
wub andwlb are the upper and lower bounds ofw respectively.

Minimize
w

∑
i

��∑
j
w jsi j

�� + λ
����w����

0 (6)

One drawback of using MILP is its heavy computation load and
our recommendation is to limit the size of the input feature set.

Minimize
z

∑
i
zi + λ

∑
j
tj , zi ≥ 0, tj = {0, 1}

Subject to: − zi ≤
∑
j
w jsi j ≤ zi

tjwlb ≤ w j ≤ tjwub

(7)

2.1.4 Avoiding combination of previous grouped features. MILP
with L0 regularization can be executed multiple times on one fea-
ture set to construct many expressions from different subsets. The
constraint in Eq. 8 is required to avoid MILP choosing the same
subset as previous executions. Sk is the subset of features selected
in execution k and S contains all previous subsets.∑

j ∈Sk

tj ≤
��Sk �� − 1 ∀Sk ∈ S (8)

The above constraint allows MILP to keep exploring a feature
set when the previously constructed expressions did not yield a
good validation error.

2.2 Main Algorithm
Algo. 1, inspired by EFS [1], is embedded with the formulations
presented above. Note that even though LP with L1 regularization
is mentioned above, it has not been integrated into our algorithm.

3 EXPERIMENTS
Table 1 lists the experimental set up for this study, while Table 2
shows the simulated benchmarks and their corresponding discov-
ered forms by our proposed algorithm. One point to note is the
scaling effect of c . Naturally the value of c should be set to as close
to 0 as possible. However, because the right hand side is always 0,
c can be of any magnitude, which in turn will affect the magnitude
ofw ,wub ,wlb and even λ.

Algorithm 1 Proposed Algorithm
Require: Parameters listed in Table 1;
1: FS ← All or iдinal var iables ; // FS: feature set
2: дen ← 0;
3: while дen < G do
4: S ← ∅;
5: for k ← 1 to K do
6: Sk ← Generate_Expression_MILP (FS , S);

// Sk : selected feature set in iteration k
7: S ← {S , Sk };
8: end for;
9: FS ← {Unique f eatures in S , all or iдinal var iables };
10: FS ← Generate_Extra_Features(FS , N ,M);
11: end while;

Table 1: Parameters used for the numerical experiments

Parameter Value
c , λ, wub , wlb 0.5, 1e-4, 1, -1
G , K 10, 10
N : max size of feature set 40
M : max size of individual feature 5
Operators +, -, *, /, sin, cos, exp, log

Table 2: Benchmark problems and discovered forms

Problem Definition Discovered Form
Circle x 2 + y2 − 16 −0.0625078x 2 − 0.0625023y2 + 1
Sphere x 2 + y2 + z2 − 2 0.0499958x 2 + 0.0500005y2 +

0.0499979z2 − 0.0999904
Pendulum ω2 − 19.6cos(θ) −0.805999cos(θ) + 0.0411235ω2

Pendulum α + 9.8sin(θ) 0.0458249α + 0.449085sin(θ)

4 CONCLUSIONS
In this study, we propose a novel way to apply LP to solve implicit
equations symbolically. In principle, this method can be also applied
to uncover explicit equations and has the potential of discovering
multiple relationships in one run. For future work, we would like
to improve the feature evolution process and carry out in-depth
investigation of the effect of using LP with L1 norm regularization
to determine the input feature set for MILP; especially targeted
towards scaling the performance for high-dimensional problems.

REFERENCES
[1] Ignacio Arnaldo, Una-May O’Reilly, and Kalyan Veeramachaneni. 2015. Build-

ing Predictive Models via Feature Synthesis. In ACM Genetic and Evolutionary
Computation Conference (GECCO). ACM, New York, NY, USA, 983–990.

[2] Q. N. Huynh, S. Chand, H. K. Singh, and T. Ray. 2018. Genetic Programming With
Mixed-Integer Linear Programming-Based Library Search. IEEE Transactions on
Evolutionary Computation 22, 5 (Oct 2018), 733–747.

[3] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. 2017.
Data-driven discovery of partial differential equations. Science Advances 3, 4
(2017).

[4] Michael Schmidt and Hod Lipson. 2009. Distilling Free-Form Natural Laws from
Experimental Data. Science 324, 5923 (2009), 81–85.

[5] Michael Schmidt and Hod Lipson. 2010. Symbolic Regression of Implicit Equations.
Springer US, Boston, MA, 73–85.

345

	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Linear Programming
	2.2 Main Algorithm

	3 Experiments
	4 Conclusions
	References

