Tag-accessed memory data analyses

Contents
OVEIVIEW e 1
Package Setup L e 1
Data Loading o . e 1
Preliminary Results o L e 2
Successful Runs after 300 Generations e 2
Experimental Results e 3
Successful Runs after 500 Generationso 3
Statistical Analysis 4
Problem: Number IO e 4
Problem: Smallest e 4
Problem: Median e e e e e 5
Problem: Grade. 5
Problem: For Loop Ind. 5
References e 6
Overview

Here, we analyze our experimental results comparing tag-accessed memory to more traditional, direct-indexed
memory. Specifically, we conducted a series of experiments using simple linear-GP representations on program
synthesis problems. In all experiments, we evolved genetic programs that used tag-accessed memory and
programs that used direct-indexed memory. Aside from how programs were allowed to access memory, both
genetic programming systems/representations were identical (e.g., had identical sets of instructions).

First, we present data from our preliminary experiments, which used a range of numeric argument and
tag-based argument mutation rates. Based on these preliminary data, we decided to remove our two most
extreme mutation rates and run a higher-replicate-count experiment with new random number seeds.

This document was generated using R markdown with R version 3.3.2 (2016-10-31) (R Core Team, 2016).

Package Setup

library(tidyr) # (Wickham & Henry, 2018)
library(ggplot2) # (Wickham, 2009)
library(plyr) # (Wickham, 2011)
library(dplyr) # (Wickham et al., 2018)
library(cowplot) # (Wilke, 2018)

Data Loading

Set path information (for both preliminary data and for final experiment data).

prelim_u300_summary_loc <-
"../data/prelim/min_programs__update_300__solutions_summary.csv"

ub00_summary_loc <-
"../data/sweep/min_programs__update_500__solutions_summary.csv"

Load data in from file(s). Pretty it up (for our graphs).

Load preliminary data.
prelim_u300_summary <- read.csv(prelim_u300_summary_loc, na.strings = "NONE")
prelim_u300_summary$arg_mut_rate <- as.factor(prelim_u300_summary$arg_mut_rate)

prelim_u300_summary$problem <- factor(prelim_u300_summary$problem,

levels = c("number-io", "smallest", "median", "grade", "for-loop-index"))
levels(prelim_u300_summary$problem) <- c("Number IO0", "Smallest",

"Median", "Grade", "For Loop Ind.")

Load experiment data.
ub00_summary <- read.csv(ub00_summary_loc, na.strings = "NONE")
u500_summary$arg_mut_rate <- as.factor(ub00_summary$arg mut_rate)

u500_summary$problem <- factor(ub00_summary$problem, levels = c("number-io",
"smallest", "median", "grade", "for-loop-index"))

levels (ub00_summary$problem) <- c("Number I0", "Smallest", "Median",
"Grade", "For Loop Ind.")

Preliminary Results

We ran a set of preliminary experiments, applying our simple linear GP representation (with tag-based
memory and direct-indexed memory) to 5 problems from the general program synthesis benchmark suite
(Helmuth & Spector, 2015): for loop index, grade, median, small or large, and smallest.

We tried several tag-argument and numeric-argument mutation rates in our preliminary runs. For runs that
used tag-based arguments, we tried the following per-bit tag-argument mutation rates: 0.00001, 0.0001, 0.001,
0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.5. For runs that used numeric arguments, we tried the
followign per-argument mutation rates: 0.00001, 0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075,
0.1, 0.5.

We ran the number io problem for 100 generations and 300 generations for all other problems. For each
problem, we looked at the proportion of runs (30 replicates per condition) that produced solutions.

Successful Runs after 300 Generations

Saving 6.5 x 4.5 in image

Numeric Tag-BitFlips

husuubnNAN sadRRRRRRNS:
i o
N usauilNENORN HdENn g
.3
é 1912 0 &H&iiiﬁiﬁ 0 Lﬁ&iﬂﬂiﬂ 0000 8
eFd :
A7)] o
glgiélﬁﬂiﬁiiﬁiﬂo ﬁ.&iﬂiiﬁéo 000 B
)] i)
18:‘&Hiiiiiiiﬂo ﬁiiﬁiiﬂ.&o 000 ®
% g‘
18:#_-%&_&111&_ PR | PPN
n < Lo — O O — L0 L < — N W0 - L
??8805388566 ??8885882500
5455858°5°3°° 5458558°3°3
Argument Mutation Rate

Experimental Results

In our second (final) set of runs, we applied our two linear GP representations (one with tag-accessed memory
and one with direct-indexed memory) to five problems: number IO, for loop index, grade, median, and
smallest.

We ran number IO for 100 generations. To increase the solve rates of the other problems, we increased the
number of generations we ran for loop index, grade, median, and smallest runs from 300 to 500 generations.

Because the most extreme mutation rates (0.00001 and 0.5) were never the best mutation rate for finding
solutions, we dropped them from this experiment to dedicate more computational resources toward running
more replicates.

As before, for each problem we looked at the proportion of runs (50 replicates per condition) that
produced solutions.

Successful Runs after 500 Generations

Saving 6.5 x 4.5 in image

Numeric Arguments Tag—based Arguments

suaBiBlCla saitata,
calidNiRis cildalas |

N B
[eNeNe)
1 1 1

N B
(eoNoNe]
1 1

N
o

Successful Runs
N
[oNe]
apelo URIPIN SoewsS | Jaquin

40 1
Zo-ﬁi
40 - o
0o R @NaNENN 66 B, c
o
0142 Z S
S o W0WWd WL A Y oW oW o
CodNON~NONONS S OO O~k oA O K~ g
I © 0o O o g5 O g © I © 0o O o g5 O g ©
& oc 2 oc < o o % oc 2 oc < o o
o o o o

Argument Mutation Rate

Statistical Analysis

For each problem, we compared the success rates of the best-performing mutation rate conditions for tag-based
memory and direct-indexed memory using a Fisher’s exact test.

Problem: Number 10

Successful Runs Failed Runs
Numeric Args 48 2
Tag Args 50 0

Fisher's Exact Test for Count Data

data: contingency_table
p-value = 0.4949
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.000000 5.307419
sample estimates:
odds ratio
0

Problem: Smallest

Successful Runs Failed Runs

Numeric Args 40 10
Tag Args 32 18

Fisher's Exact Test for Count Data

data: contingency_table
p-value = 0.1182
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.8394778 6.2269207
sample estimates:
odds ratio
2.231652

Problem: Median

Successful Runs Failed Runs
Numeric Args 39 11
Tag Args 37 13

Fisher's Exact Test for Count Data

data: contingency_table
p-value = 0.8153
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.4494643 3.4916226
sample estimates:
odds ratio
1.24296

Problem: Grade

Successful Runs Failed Runs
Numeric Args 46 4
Tag Args 44 6

Fisher's Exact Test for Count Data

data: contingency_table
p-value = 0.7407
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.3434417 8.0502248
sample estimates:
odds ratio
1.561184

Problem: For Loop Ind.

Successful Runs Failed Runs
Numeric Args 39 11

Tag Args 38 12
Fisher's Exact Test for Count Data

data: contingency_table
p-value =1
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.3970095 3.1774697
sample estimates:
odds ratio
1.118352

References

Claus O. Wilke (2018). cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package
version 0.9.3. https://CRAN.R-project.org/package=cowplot

Helmuth, T., & Spector, L. (2015). General Program Synthesis Benchmark Suite. In Proceedings of the 2015
on Genetic and Evolutionary Computation Conference - GECCO ’15 (pp. 1039-1046). New York, New York,
USA: ACM Press. https://doi.org/10.1145/2739480.2754769

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

Hadley Wickham and Lionel Henry (2018). tidyr: Easily Tidy Data with ‘spread()’ and ‘gather()’ Functions.
R package version 0.8.1. https://CRAN.R-project.org/package=tidyr

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical
Software, 40(1), 1-29. URL http://www.jstatsoft.org/v40/i01/.

Hadley Wickham, Romain Francois, Lionel Henry and Kirill Miiller (2018). dplyr: A Grammar of Data
Manipulation. R package version 0.7.5. https://CRAN.R-project.org/package=dplyr

https://CRAN.R-project.org/package=cowplot
https://doi.org/10.1145/2739480.2754769
https://www.R-project.org/
https://CRAN.R-project.org/package=tidyr
http://www.jstatsoft.org/v40/i01/
https://CRAN.R-project.org/package=dplyr

	Overview
	Package Setup
	Data Loading
	Preliminary Results
	Successful Runs after 300 Generations

	Experimental Results
	Successful Runs after 500 Generations
	Statistical Analysis
	Problem: Number IO
	Problem: Smallest
	Problem: Median
	Problem: Grade
	Problem: For Loop Ind.

	References

