
Genetic Programming System

Here, we provide a more detailed description of the linear GP system we used in this work. This doc-
ument also reports configuration details used in this work. Our exact configuration files along with
experiment source code can be found in our online GitHub repository: https://github.com/amlalejini/
GECCO-2019-tag-accessed-memory.

Contents

• GP Representation
– Programs
– Virtual CPU
– Tag-accessed Memory
– Direct-indexed Memory

• Instruction Set
– Default Instructions
– Problem-specific Instructions

* Problem - Number IO

* Problem - For Loop Index

* Problem - Grade

* Problem - Median

* Problem - Smallest
• Experiment Configuration Details

– Configuration Details - Number IO
– Configuration Details - For loop index
– Configuration Details - Grade
– Configuration Details - Median
– Configuration Details - Smallest

• References

GP Representation

Programs

Programs are linear sequences of instructions, and each instruction has three arguments that may
modify its behavior. Our instruction set supports basic computations (e.g., addition, subtraction,mul-
tiplication, etc.) and allows programs to control the flow of execution (e.g., conditional branching,
looping, etc.).

1

https://github.com/amlalejini/GECCO-2019-tag-accessed-memory
https://github.com/amlalejini/GECCO-2019-tag-accessed-memory


Virtual CPU

Programs are executed in the context of a simple virtual CPU, which manages the flow of execution
(e.g., looping, current instruction, etc.) and gives programs access to 16 memory registers used for
storing data and for performing computations.

Tag-accessed Memory

Many traditional GP systems that give genetic programs access to memory (e.g., indexable memory
registers) use rigid naming schemes where memory is numerically indexed, and mutation operators
must guarantee the validity of memory-referencing instructions. Tag-accessed memory allows pro-
grams to use tag-based referencing to index into memory registers. Tags are evolvable labels that
give genetic programs a flexible mechanism for specification. Tags allow for inexact referencing; a re-
ferring tag references the closestmatching referent. To facilitate inexact referencing, the similarity (or
dissimilarity) between any two tags must be quantifiable; thus, a referring tag can always reference
the closest matching referent tag. This ensures that all possible tags are valid references. When using
a tag-accessedmemorymodel, eachof the 16memory registers in the virtual CPUare statically tagged
with length-16 bit strings. Tags used formemory registers were generated using the Hadamardmatrix
and were as follows:

• Register 0: 1111111111111111
• Register 1: 0101010101010101
• Register 2: 0011001100110011
• Register 3: 1001100110011001
• Register 4: 0000111100001111
• Register 5: 1010010110100101
• Register 6: 1100001111000011
• Register 7: 0110100101101001
• Register 8: 0000000011111111
• Register 9: 1010101001010101
• Register 10: 1100110000110011
• Register 11: 0110011010011001
• Register 12: 1111000000001111
• Register 13: 0101101010100101
• Register 14: 0011110011000011
• Register 15: 1001011001101001

Each program instruction has three tag arguments (i.e., each instruction argument is a length-16 bit
string). Tag-based instruction arguments reference the memory position with the closest matching

2



tag; as such, argument tags need not exactlymatch any of the tags with memory
positions.

Direct-indexed Memory

Direct-indexed memory is the traditional form of memory access in linear GP. Each program instruc-
tion has three numeric arguments (0 through 15) that are used to directly specify memory registers.

Below is a cartoon contrasting tag-accessedmemory with direct accessedmemory.

Instruction Set

We used identical instruction sets in both memory model conditions (tag-accessed and direct-
indexed). However, in conditions using the tag-accessed memory, instructions used tag arguments
that used tag-based referencing to index into the virtual CPU’s memory registers, and in conditions
using the direct-indexed memory, instructions used numeric arguments that directly indexed into
the virtual CPU’s memory registers.

Below, we describe our default instruction set (used across all problems), and all problem-specific
instructions.

Default Instructions

Note:

• EOP: End of program
• Reg: Register
• Reg[0] indicates the value at the register specified by an instruction’s first argument (either tag-
based or numeric), Reg[1] indicates the value at the register specified by an instruction’s second

3



argument, and Reg[2] indicates the value at the register specified by the instruction’s third ar-
gument.

• Reg[0], Reg[1], etc: Register 0, Register 1, etc.

Instructions that would produce undefined behavior (e.g., division by zero) are treated as no opera-
tions.

Instruction Arguments Used Description

Add 3 Reg[2] = Reg[0] + Reg[1]

Sub 3 Reg[2] = Reg[0] - Reg[1]

Mult 3 Reg[2] = Reg[0] * Reg[1]

Div 3 Reg[2] = Reg[0] / Reg[1]

Mod 3 Reg[2] = Reg[0] % Reg[1]

TestNumEqu 3 Reg[2] = Reg[0] == Reg[1]

TestNumNEqu 3 Reg[2] = Reg[0] != Reg[1]

TestNumLess 3 Reg[2] = Reg[0] < Reg[1]

TestNumLessTEqu 3 Reg[2] = Reg[0] <= Reg[1]

TestNumGreater 3 Reg[2] = Reg[0] > Reg[1]

TestNumGreaterTEqu 3 Reg[2] = Reg[0] >= Reg[1]

Floor 1 Floor(Reg[0])

Not 1 Reg[0] = !Reg[0]

Inc 1 Reg[0] = Reg[0] + 1

Dec 1 Reg[0] = Reg[0] - 1

CopyMem 2 Reg[0] = Reg[1]

SwapMem 2 Swap(Reg[0], Reg[1])

If 1 If Reg[0] != 0, proceed. Otherwise skip to the next Close or EOP.

IfNot 1 If Reg[0] == 0, proceed. Otherwise skip to the next Close or EOP.

While 1 While Reg[0] != 0, loop. Otherwise skip to next Close or EOP.

Countdown 1 Same as While, but decrement Reg[0] if Reg[0] != 0.

Close 0 Indicate the end of a control block of code (e.g., loop, if).

Break 0 Break out of current control flow (e.g., loop).

4



Instruction Arguments Used Description

Return 0 Return from program execution (exit program execution).

Set-0 1 Reg[0] = 0

Set-1 1 Reg[0] = 1

Set-2 1 Reg[0] = 2

Set-3 1 Reg[0] = 3

Set-4 1 Reg[0] = 4

Set-5 1 Reg[0] = 5

Set-6 1 Reg[0] = 6

Set-7 1 Reg[0] = 7

Set-8 1 Reg[0] = 8

Set-9 1 Reg[0] = 9

Set-10 1 Reg[0] = 10

Set-11 1 Reg[0] = 11

Set-12 1 Reg[0] = 12

Set-13 1 Reg[0] = 13

Set-14 1 Reg[0] = 14

Set-15 1 Reg[0] = 15

Set-16 1 Reg[0] = 16

Problem-specific Instructions

Problem - Number IO

Instruction # Arguments Used Description

LoadInt 1 Reg[0] = integer input

LoadDouble 1 Reg[0] = double input

SubmitNum 1 Output Reg[0]

5



Problem - For Loop Index

Instruction # Arguments Used Description

LoadStart 1 Reg[0] = start input

LoadEnd 1 Reg[0] = end input

LoadStep 1 Reg[0] = step input

SubmitNum 1 Output Reg[0]

Problem - Grade

Instruction # Arguments Used Description

SubmitA 0 Classify grade as “A”

SubmitB 0 Classify grade as “B”

SubmitC 0 Classify grade as “C”

SubmitD 0 Classify grade as “D”

SubmitF 0 Classify grade as “F”

LoadThreshA 1 Reg[0] = input threshold for “A”

LoadThreshB 1 Reg[0] = input threshold for “B”

LoadThreshC 1 Reg[0] = input threshold for “C”

LoadThreshD 1 Reg[0] = input threshold for “D”

LoadGrade 1 Reg[0] = input grade to classify

Problem - Median

Instruction # Arguments Used Description

LoadNum1 1 Reg[0] = input 1

LoadNum2 1 Reg[0] = input 2

LoadNum3 1 Reg[0] = input 3

SubmitNum 1 Output Reg[0]

6



Problem - Smallest

Instruction # Arguments Used Description

LoadNum1 1 Reg[0] = input 1

LoadNum2 1 Reg[0] = input 2

LoadNum3 1 Reg[0] = input 3

LoadNum4 1 Reg[0] = input 4

SubmitNum 1 Output Reg[0]

Experiment Configuration Details

Here, we discuss only the configuration details for the experiments reported in our extended abstract.
For details on preliminary experiments, see our data analysis supplemental material.

We used the lexicase parent selection algorithm to solve five problems from Helmuth and Spector’s
general program synthesis benchmark suite (Helmuth and Spector, 2015): number IO, smallest, me-
dian, grade, and for loop index. Weused identical training and testing sets as in (Helmuth andSpector,
2015). Refer to (Helmuth and Spector, 2015) for more details about these problems.

For each problem, we evolved 50 replicate populations of 500 individuals at a range of mutation rate
conditions. In all but the number IO problem, we evolved programs for 500 generations. Because
number IO is substantially easier than each of the other problems (Helmuth and Spector, 2015), we
only evolved these programs for 100 generations.

We propagated programs asexually and appliedmutations to offspring. We applied single-instruction
insertions, deletions, and substitutions at a per-instruction rate of 0.005 each and multi-instruction
sequence duplications and deletions at a per-program rate of 0.05. Because the relative performance
of these two techniques depends heavily on the chosen mutation operations and rates, we used a
wide range of argument (numeric and tag) mutation rates for each technique. Wemutated tag-based
arguments at the following per-bit rates: 0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075,
and 0.1. We mutated numeric arguments at the following per-argument rates: 0.0001, 0.001, 0.0025,
0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, and 0.1.

Eachproblem is definedby a set of test cases inwhich programsare given specified input data and are
scored on how close their output is to the correct output; depending on the problem, we measured
scores either on a gradient or on a binary pass-fail basis. During an evaluation, we limited the total
number of instructions a program could execute; this limit varied by problem. Programs were not
required to stop on their own as long as they output their results before reaching their execution limit.

7



Below we give the configuration details specific to each problem.

Configuration Details - Number IO

• Maximum allowed program length: 32
• Maximum number of instruction-execution steps: 32
• Test scores were measured on a pass/fail basis.
• Generations: 100

Configuration Details - For loop index

• Maximum allowed program length: 128
• Maximum number of instruction-execution steps: 256
• Test scoresweremeasuredonagradient, using theLevenshteindistancebetween theprogram’s
output and the correct output sequence.

• Generations: 500

Configuration Details - Grade

• Maximum allowed program length: 128
• Maximum number of instruction-execution steps: 128
• Test scores were measured on a pass/fail basis.
• Generations: 500

Configuration Details - Median

• Maximum allowed program length: 64
• Maximum number of instruction-execution steps: 64
• Test scores were measured on a pass/fail basis.
• Generations: 500

Configuration Details - Smallest

• Maximum allowed program length: 64
• Maximum number of instruction-execution steps: 64
• Test scores were measured on a pass/fail basis.
• Generations: 500

8



References

Helmuth, T., & Spector, L. (2015). General Program Synthesis Benchmark Suite. In Proceedings of the
2015 on Genetic and Evolutionary Computation Conference - GECCO ’15 (pp. 1039–1046). New York,
New York, USA: ACM Press. https://doi.org/10.1145/2739480.2754769

9

https://doi.org/10.1145/2739480.2754769

	Genetic Programming System
	Contents
	GP Representation
	Programs
	Virtual CPU
	Tag-accessed Memory
	Direct-indexed Memory

	Instruction Set
	Default Instructions
	Problem-specific Instructions

	Experiment Configuration Details
	Configuration Details - Number IO
	Configuration Details - For loop index
	Configuration Details - Grade
	Configuration Details - Median
	Configuration Details - Smallest

	References


