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ABSTRACT
We address a discrete competitive facility location problem for an
entering firm with a binary customers choice rule and an asymmet-
ric objective function. A heuristic optimization algorithm which
is based on ranking of candidate locations and specially adopted
for the discrete facility location problems is designed. The pro-
posed algorithm is experimentally investigated by solving different
instances of the facility location problem with an asymmetric ob-
jective function.
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1 INTRODUCTION
A competitive facility location problems are important for firms
which provide goods or services to customers in a certain geograph-
ical area and compete for the market share with other firms. There
are various facility location models and strategies to solve them,
which differ by their ingredients, such as a facility attraction func-
tion, customers behavior rules, decision variables, a search space,
objective function(s), etc. [2, 5]).

A lot of facility location problems use a symmetric objective
function, which value remains equal independent on permutations
of values of variables. However, modeling a real-world application
usually requires asymmetric objective function, where the position
of a facility in the solution is crucial.
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2 FACILITY LOCATION PROBLEM
In this research we consider the competitive facility location prob-
lem for an entering firm, which wants to locate s new facilities
with the given qualities in a geographical region where competing
facilities already present. A solution to the problem consist of an
s-vector where its i-th component indicates where to locate a new
facility with a given quality. Since locations for the new facilities
are associated with their qualities, exchange of them leads to a
different solution thus making the problem asymmetric.

Customers are considered to be aggregated to geographic de-
mand points which location and demand are known and fixed. The
customers follow the binary customers behavior model in which
all customer form a single demand point patronizes the most attrac-
tive facility. It may occur that there are more than one facility with
maximum attraction owned by the entering firm or the competitors.
If tied facilities are distributed between the entering firm and the
competitor, then the entering firm captures a fixed proportion of
customer’s demand.

3 RANKING-BASED ALGORITHM
The Ranking-based Discrete Optimization Algorithm (RDOA) starts
with an initial solution, which is stored in a pool P of the best
solutions found so far and is used to generate a new solution. If P
contains more than one solution, then X is randomly sampled with
the sampling probability proportional to its objective function. The
new solution X (n) = {x

(n)
1 ,x

(n)
2 , . . . ,x

(n)
s } is generated by:

x
(n)
i =

{
l ∈ L \ (X ∪ X (n)), if ξi < 1/s,
xi , otherwise,

(1)

where ξi is a random number uniformly generated over the interval
[0, 1], i = 1, 2, . . . , s , and L is the set of all candidate locations.

A location lj ∈ L is selected as xi ∈ X (n) with probability

π
(r )
i j =

ri j∑ |L |
k=1 rik

, (2)

where ri j is a rank of lj to represent i-th new facility. Analogously,
sampling probability of lj to represent i-th new facility can be
evaluated by:

π
(rd )
i j =

ri j

d(lj ,xi )
∑ |L |
k=1

rik
d (lk ,xi )

, (3)

where d(lj ,xi ) is a geographical distance between candidate loca-
tion lj ∈ L and a candidate location xi ∈ X which is being changed.

Lets denote by Ri = (ri1, ri2, . . . , ri j , . . .) the ranks of all candi-
date locations from L being as a place for i-th new facility. Then all
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ranks can be described by the matrix R of s rows and |L| columns.
Initial values of R are equal to 1 and are dynamically adjusted with
respect to success and failures when generating a new candidate
solution. If the newly generated solution X (n) is better than the
worst solution X (w ) ∈ P , then X (n) is included in P and ranks of
candidate locations which form the new solution are updated by:

ri j =

{
ri j + 1, if lj = X

(n)
i ,

ri j , otherwise.
(4)

The ranks of all candidate locations which form a solution in P
which is improved by X (n), but do not belong to X (n) are reduced
by ri j = ri j − k , where k = |{X ⊂ P : xi = lj ∧M(X ) < M(X (n))}|,
i = 1, 2, . . . , s , and j = 1, 2, . . . , |L|. IfX (n) do not improve the worst
solution X (w ) ∈ P , then the ranks of all candidate locations are
updated as follows:

ri j =

{
ri j − 1, if lj = xi ∧ lj , x

(w )

i
ri j , otherwise.

(5)

If the size of P exceeds its size limit nP , then the worst solution
is removed from P . Reducing rank values can make a rank equal to
zero or negative value, e.g. ri j = −k , where k ≥ 0. Then all ranks
in Ri are increased by k + 1.

After processing the newly generated solution the algorithm
continues to the next iteration, where another solutionX is sampled
from P to generate a new solution X (n). The procedure continues
till stopping criterion is satisfied, which is based on the number
of function evaluations. The maximal pool size nP is given as an
algorithm parameter and is further reduced by removing a half
worst solutions after every 20% of function evaluations.

The algorithm which uses only the ranks to evaluate sampling
probabilities for candidate locations is denoted by RDOA and the
algorithm, which includes geographical distance – by RDOA-D.

4 EXPERIMENTAL INVESTIGATION
The experiment was focused on selecting optimal locations for
3 new facilities from a set of 500 and 1000 candidate locations
considering randomly generated qualities for the new facilities.
Both versions of RDOA, 5000 function evaluations were devoted to
evaluate the optimal solution with the maximal pool size nP = 64.
Due to stochastic nature of the algorithms, 100 runs were performed
for each experiment and average results were recorded.

The performance of the proposed algorithm was compared with
the performance of Genetic Algorithm (GA) [3], which was suc-
cessfully applied to CFLPs in [1, 4]. The population size in GA was
set to 64, the crossover and mutation rates were 0.8 and 1/s .

The results are presented in Figure 1, where the left image
presents results of the instance with 500 candidate location and
the right one – with 1000 candidate locations. The horizontal axis
of a graph stands for the number of function evaluations and the
vertical one – for the percent of market share captured by the new
facilities.

One can see from the figures, RDOA without geographical dis-
tance outperforms GA in both cases. Significant difference appears
in early stage of the algorithm, what means that RDOA is able to
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Figure 1: Results of the performance of the algorithms.

find much more better solution in the beginning of the procedure,
e.g. after 1000 function evaluations. The advantage of inclusion of
geographical distance in calculation of sampling probabilities for
candidate locations (RDOA-D) is notable in the later stage of the
algorithm; it is specially notable in the instance with 500 candidate
locations, where the best performance is achieved after 3000 func-
tion evaluations. Inclusion of the geographical distance is a kind of
a local search and is more useful when updating a good candidate
solution. This could be the reason for lower performance at the
beginning of the algorithm. It is worth to note that, the average
of objective value found after 5000 functions evaluations using
RDOA-D is close to the optimal objective value, and probability to
determine the optimal solution is close to 1.

5 CONCLUSIONS
The ranking-based heuristic algorithm for asymmetric discrete
competitive facility location was proposed and investigated. The
algorithm is based on the ranking of candidate locations for the
new facilities and includes geographical distance when sampling a
new candidate location. The results of the experimental investiga-
tion demonstrate that the proposed heuristic is able to effectively
approximate the optimal solution of the actual problem.
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