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ABSTRACT
In January 2019, DeepMind revealed AlphaStar to the world—the
first artificial intelligence (AI) system to beat a professional player
at the game of StarCraft II—representing a milestone in the progress
of AI. AlphaStar draws on many areas of AI research, including
deep learning, reinforcement learning, game theory, and evolution-
ary computation (EC). In this paper we analyze AlphaStar primarily
through the lens of EC, presenting a new look at the system and
relating it to many concepts in the field. We highlight some of its
most interesting aspects—the use of Lamarckian evolution, compet-
itive co-evolution, and quality diversity. In doing so, we hope to
provide a bridge between the wider EC community and one of the
most significant AI systems developed in recent times.
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1 BACKGROUND
The field of artificial intelligence (AI) has long been involved in
trying to create artificial systems that can rival humans in their
intelligence, and as such, has looked to games as a way of challeng-
ing AI systems. Games are created by humans, for humans, and
therefore have external validity to their use as AI benchmarks [22].

After the defeat of the reigning chess world champion by Deep
Blue in 1997, the next major milestone in AI versus human games
was in 2016, when a Go grandmaster was defeated by AlphaGo [16].
Both chess and Go were seen as some of the biggest challenges for
AI, and arguably one of the few comparable tests remaining is to
beat a grandmaster at StarCraft (SC), a real-time strategy game. Both
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the original game, and its sequel SC II, have several properties that
make it considerably more challenging than even Go: real-time play,
partial observability, no single dominant strategy, complex rules
that make it hard to build a fast forward model, and a particularly
large and varied action space.

DeepMind recently took a considerable step towards this grand
challenge with AlphaStar, a neural-network-based AI system that
was able to beat a professional SC II player in December 2018 [20].
This system, like its predecessor AlphaGo, was initially trained
using imitation learning to mimic human play, and then improved
through a combination of reinforcement learning (RL) and self-
play. At this point the algorithms diverge, as AlphaStar utilises
population-based training (PBT) [9] to explicitly keep a popula-
tion of agents that train against each other [8]. This part of the
training process was built upon multi-agent RL and game-theoretic
perspectives [2, 10], but the very notion of a population is cen-
tral to evolutionary computation (EC), and hence we can examine
AlphaStar through this lens as well1.

2 COMPONENTS
2.1 Lamarckian evolution
Currently, the most popular approach to training the parameters of
neural networks is backpropagation (BP). However, there are many
methods to tune their hyperparameters, including evolutionary
algorithms (EAs). A particularly synergistic approach is to use a
memetic algorithm (MA), in which evolution is run as an outer op-
timisation algorithm, and individual solutions can be optimised by
other means, such as BP, in an inner loop [12]. In this specific case,
an MA can combine the exploration and global search properties
of EAs with the efficient local search properties of BP.

PBT [9], used in AlphaStar to train agents, is an MA that uses
Lamarckian evolution (LE)2: in the inner loop, neural networks are
continuously trained using BP, while in the outer loop, networks
are picked using one of several selection methods (such as binary
tournament selection), with the winner’s parameters overwriting
the loser’s; the loser also receives a mutated copy of the winner’s
hyperparameters [6]. PBT was originally demonstrated on a range
of supervised learning and RL tasks, tuning networks with higher
performance than had previously been achieved. It is perhaps most
beneficial in problems with highly non-stationary loss surfaces,
such as deep RL, as it can change hyperparameters on the fly.

As a single network may take several gigabytes of memory, or
need to train for several hours, scalability is key for PBT. As a con-
sequence, PBT is both asynchronous and distributed [13]. Rather
than running many experiments with static hyperparameters, the
same amount of hardware can utilise PBT with little overhead—the
1Note that we present a high-level overview of general interest, and have left aside
the many deep links to the crossovers between EC and game theory [17].
2A more extensive literature review on LE can be found in the original paper.
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outer loop reuses solution evaluation from the inner loop, and re-
quires relatively little communication. When considering the effect
of non-stationary hyperparameters and pre-emption on weaker
solutions, the savings are even greater.

Another consequence of these requirements is that PBT is steady
state [19], as opposed to generational EAs such as classic genetic
algorithms. A natural fit for asynchronous EAs and LE, steady
state EAs can allow the optimisation and evaluation of individual
solutions to proceed uninterrupted and hence maximise resource
efficiency. The fittest solutions survive longer, naturally providing
a form of elitism/hall of fame, but even ancestors that aren’t elites
may be preserved, maintaining diversity3.

2.2 Co-evolution
When optimising an agent to play a game, like in AlphaStar, it is
possible to use self-play for the agent to improve itself. Competitive
co-evolutionary algorithms (CCEAs) can be seen as a superset of
self-play, as rather than keeping only a solution and its predeces-
sors, it is instead possible to keep and evaluate against an entire
population of solutions. Like self-play, CEAs form a natural cur-
riculum [7], but also confer an additional robustness as solutions
are evaluated against a varied set of other solutions [15, 18].

Through the use of PBT in a CCEA setting, Jaderberg et al. [8]
were able to train agents to play a first-person game from pixels,
utilising BP-based deep RL in combination with evolved reward
functions [1]. The design of CEAs have many aspects [14], and
characterising this approach could lead to many potential variants.
Here, for example, the interaction method was atypically based on
sampling agents with similar fitness evaluations (Elo ratings), but
many other heuristics exist.

2.3 Quality diversity
Amajor advantage of keeping a population of solutions—as opposed
to a single one—is that the population can represent a diverse
set of solutions. This is not restricted strictly to multi-objective
optimisation problems, but can also be applied to single objectives,
where behaviour descriptors (BDs; i.e., solution phenotypes) can be
used to pick solutions in the end. Quality diversity (QD) algorithms
explicitly optimise for a single objective (quality), but also search
for a large variety of solution types, via BDs, to encourage greater
diversity in the population [4]. Recently, Ecoffet et al. [5] used a QD
algorithm to reach another milestone in playing games with AI—
their systemwas the first to solve Montezuma’s Revenge, a platform
game notorious for its difficulty in exploring the environment.

In SC, there is no best strategy. Hence, the final AlphaStar agent
consists of the set of solutions from the Nash distribution of the
population—the set of complementary, least exploitable strategies
[2]. In order to improve training, as well as increase the variety
in the final set of solutions, it therefore makes sense to explicitly
encourage diversity. As it does so, AlphaStar can also be classified
as a QD algorithm. In particular, agents may have game-specific
BDs, such as building extra units of a certain type, but also criteria
to beat a certain other agent4, criteria to beat a set of other agents,
or even a mix of these. Furthermore, these specific criteria are also
adapted online, which is relatively novel among QD algorithms [21].
3When given an appropriate selection pressure [11].
4A concept highly related to competitive fitness sharing in CCEAs [15].

There is more that could be done here though: it may be possible
to extract BDs from human data [22], or even learn them in an
unsupervised manner [3]. And, given a set of diverse strategies, a
natural next step is to infer which might work best against a given
opponent, enabling online adaptation.

3 DISCUSSION
While AlphaStar is a complex system that draws upon many areas
of AI research, we believe a hitherto undersold perspective is that
of it as an EA. In particular, it combines LE, CCEAs, and QD to
spectacular effect. We hope that this perspective will give both the
EC and deep RL communities the ability to better appreciate and
build upon this significant AI system.
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