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ABSTRACT
The route to the solution of complex design problems often lies
through intermediate “stepping stones” which bear little resem-
blance to the final solution. By greedily following the path of great-
est fitness improvement, objective-based search overlooks and dis-
cards stepping stones whichmight be critical to solving the problem.
Here, we hypothesize that Quality Diversity (QD) algorithms are a
better way to generate stepping stones than objective-based search:
by maintaining a large set of solutions which are of high-quality,
but phenotypically different, these algorithms collect promising
stepping stones while protecting them in their own “ecological
niche”. To demonstrate the capabilities of QD we revisit the chal-
lenge of recreating images produced by user-driven evolution, a
classic challenge which spurred work in novelty search and illus-
trated the limits of objective-based search. We show that QD far
outperforms objective-based search in matching user-evolved im-
ages. Further, our results suggest some intriguing possibilities for
leveraging the diversity of solutions created by QD.
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1 INTRODUCTION
In complex problems it is often not possible to follow incremental
improvements to an optimal solution. These deceptive cases, where
the path to high-performing regions leads through poor-performing
regions, can cause difficulty or outright failure of algorithms which
only consider optimization of the objective function.
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The deficiencies of objective search was made explicit by Wool-
ley and Stanley [9] with an illustrative example drawn from the
collaborative evolution project Picbreeder [6]. In Picbreeder users
are presented with a set of images, and prompted to select one or
more to act as parents for a next generation of evolved images. The
parents are combined and mutated to produce a new set of images,
which are once again presented to the user for selection. In this
way the users evolve increasingly complex images, which can be
shared with a community of other users to use as starting points
for their own explorations. The results range from abstract shapes
to images resembling butterflies, cars, dolphins, and skulls.

In [9] the authors attempted to find these same images using
automated evolution, in place of human selection. Interestingly,
even though the same method of representing and varying images
was used, the algorithm failed dramatically at reproducing all but
the simplest images. The automated algorithm chose as parents the
closest pixel-by-pixel match to the target image, and it was this
“single-minded approach” which the authors blamed for the failure.

This finding echoes those obtained a few years before with nov-
elty search [4], a thought-provoking alternative to objective-driven
search. In its purest form, novelty search abandons traditional ob-
jectives in favor of exploration of phenotypic space, such as robot
behaviors or design features. By exploring the space of possible be-
haviors selection pressure is biased toward “novel”solutions rather
than only those which bring the algorithm closer to a stated goal.
Novelty-based methods operate by collecting a variety of “stepping
stones” which may lead to better solutions, rather than searching
for better solutions explicitly.

Looking for “interesting” results is an approach which mirrors
the one taken by users of Picbreeder, up to a point: users explore the
space of images without a particular goal until they find an image
which resembles something they recognize, and then purposefully
hone that resemblance. A directed component is similarly necessary
to attack this picture matching task. Combinations of novelty search
and objective search, known as Quality Diversity (QD) algorithms
[2] borrow from both fields to produce a large number of high-
quality, but qualitatively varied solutions to a problem.

Here we show that a QD algorithm can perform significantly
better at the Picbreeder images matching task.

2 EXPERIMENTS
The evolution of images in Picbreeder is performed by evolving
directed graphs called Compositional Pattern Producing Networks
(CPPNs) [7]. CPPNs operate like neural networks; they take as
inputs the coordinates of a pixel (e.g. x,y) and output a value to
color this pixel (e.g. a gray scale intensity). Nodes of a CPPN have a
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Figure 1: Picbreeder Pixel Matching with NEAT and MAP-Elites. From left to right: the target images, a sample of the highest
performing images found by NEAT, MAP-Elites, and themean of all images at the end of the run ofMAP-Elites. Images shown
are the end result of distinct runs. Far right: distribution of highest fitness found by each approach over 16 runs.

variety of activation functions, such as sin and Gaussian, allowing
for the emergence of repetitive and symmetric patterns. CPPNs are
evolved with the NEAT [8] algorithm, which evolves networks of
increasingly complexity by adding nodes and connections through
mutation. This CPPN-NEAT approach was used in both Picbreeder
and Wooley’s attempts to match the resulting images [9].

To illustrate the capabilities of QD in this problem we main-
tain the same representation and variation operators, but guide
evolution using the QD algorithm MAP-Elites [1, 5]. MAP-Elites
maintains an archive of solutions, known as elites, stored in “niches”.
New solutions are created by mutating these elites, which act as the
parent population. Child solutions are then evaluated and assigned
a niche based on their features. If this niche is already occupied
by an elite, the individual with the higher fitness is placed in the
niche and the other discarded. By repeating this process a set of in-
creasingly optimal solutions are discovered for every combination
of features. We refer to the archive of elites as a whole as a “map”.

We explore two features which define the dimensions of the map.
The first, complexity, is simply the number of connections in the
network. For the second, we introduce a generic notion of novelty.
Periodically all of the images in the map are compiled and used
to train an autoencoder [3]; when a new image is produced we
compress and reconstruct the image with the autoencoder, examin-
ing the pixel-by-pixel error of the reconstruction. Images similar
to those which were used to train the autoencoder will be recon-
structed well, those different poorly. The reconstruction error is
used as generic approximation of “novelty” or “interestingness”.

The ability of NEAT and MAP-Elites to match the target images
is then compared. Each algorithm was run 16 times, and the closest
pixel match recorded. The distribution of the best fitness found
over all runs is shown above (Figure 1, right). To illustrate the
meaning of this difference qualitatively we show a selection of high
fitness images from each of the two approaches, each drawn from
a different run (Figure 1, left).

NEAT is unable to find more than a basic circular shape, as
reported in previous experiments [9]. Deviating from this shape
decreases fitness, and these solutions are less likely to continue
to the next generation. In contrast, MAP-Elites collects a variety

of shapes, so possible stepping stones are kept, and the resulting
images are much closer to the target.

QD produces varied solutions to a problem, and in this diversity
differing aspects of the problem are solved. This variety can be
combined to powerful effect: if the mean pixel value of all elites in
the map is taken this “mean image” is a closer match then the best
single image, and more recognizable to the human eye.

3 CONCLUSION
In this picture synthesis experiment, a QD algorithm (here, MAP-
Elites) clearly outperforms objective-based search, which suggests
that QD algorithms can be better at generating stepping stones than
objective-based search. Nevertheless, the images produced by MAP-
Elites are not a perfect match with the target image. Intriguingly,
in every run the mean of all found solutions in the map produced
by MAP-Elites improved on the performance of any individual
solution. This points to the potential usefulness of the body of
solutions produced by QD when taken as a whole, that is, as an
“ensemble”. That even the most naive ensemble approach yields
results suggests promise in pursuing a more sophisticated way of
combining the solutions found by QD.
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