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ABSTRACT
Expensive black-box problems are usually optimized by Bayesian
Optimization (BO) since it can reduce evaluation costs via cheaper
surrogates. The most popular model used in Bayesian Optimiza-
tion is the Gaussian process (GP) whose posterior is based on a
joint GP prior built by initial observations, so the posterior is also
a Gaussian process. Observations are often not noise-free, so in
most of these cases, a noisy transformation of the objective space
is observed. Many single objective optimization algorithms have
succeeded in extending efficient global optimization (EGO) to noisy
circumstances, while ParEGO fails to consider noise. In order to deal
with noisy expensive black-box problems, we extending ParEGO
to noisy optimization according to adding a Gaussian noisy er-
ror while approximating the surrogate. We call it noisy-ParEGO
and results of S-metric indicate that the algorithm works well on
optimizing noisy expensive multiobjective black-box problems.
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1 INTRODUCTION
Bayesian Optimization (BO)[7] is an effective method to optimize
expensive black-box functions whose landscapes are unknown and
evaluations are rather expensive. It usually builds a cheaper approx-
imate GP surrogate for original black-box problem. Meanwhile, an
acquisition function which balances exploitation and exploration
is maximized to obtain new recommendations. Expected improve-
ment (EI) function [5] is one of the most popular ones among these
acquisition functions.

Efficient global optimization (EGO) [5] is an effective global ob-
jective optimization algorithm using the GP for single objective
problems. Pareto EGO (ParEGO) [6] extends EGO to optimize mul-
tiobjective black-box problems. These two algorithms both assume
noise-free observations which can be surrogated by smoothing,
continuous approximation. While in many real problems, initial
observations are often noisy. In these cases, a smooth continu-
ous surrogate can no longer approximate true black-box problems
correctly. By taking this problem into consideration, the sequen-
tial Kriging optimization (SKO) [4] and the sequential parameter
optimization (SPO) [1] are proposed to optimize noisy single objec-
tive functions. However, as far as multiobjectives are concerned,
ParEGO obviously fails to consider the noisy circumstances.

In this paper, we propose an extension of ParEGO to optimize
multiobjective black-box problems with noisy observations. We use
reinterpolation to build the GP surrogate to eliminate themisleading
expected improvement caused by noise [3] in multiobjective black-
box optimization problems. Results show that the algorithm become
more stable if noise in observations is considered.

2 EXTENDING PAREGO TO NOISY
MULTIOBJECTIVE BLACK-BOX PROBLEMS

Our algorithm begins with LHS sampling to generate initial solu-
tions as in ParEGO [6]. At every iteration, only one of the weight
vectors Λ = {λ1, λ2, . . . , λk } is selected to calculate the augmented
Tchebycheff function value fλ(x) which is named as scalar cost,
and k is the dimension of objective space. The scalar cost is a mea-
surement of solutions and a smaller scalar cost usually indicates a
better Pareto optimal solution. Here, ρ is set to 0.05.

The key idea and the only difference between our algorithm and
ParEGO is the DACE model building. In both algorithms, the scalar
cost is regarded as objective value y used in EI function. However,
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Algorithm 1 Noisy-ParEGO Algorithm
1: Latin Hpercube Sample to generate xpop
2: For t = 1, 2, . . . ,T do
3: Initialize normalized weight vector Λ = {λ1, λ2, . . . , λk }

4: Evaluate xpop: fλ(x) =
kmax
i=1

(λi · fi (x)) + ρ
k∑
i=1

λi · fi (x)

5: Modelling: y = fmodel (x) + ϵ where ϵ ∼ N (0,σ 2
noise )

6: Sampling via maximizing EI f unction
7: Update xpop and Model
8: End for

Table 1: Mean of the S metric after 100 iterations

Problem noisy-ParEGO ParEGO

MOP2 7.53519695E-02 6.09992913E-02
MOP3 1.48622930E+01 1.38593883E+00
OKA1 3.78962194E+00 4.47665674E+00
OKA2 2.19196161E+00 3.65442752E+00

DTLZ1A 1.89938845E+04 2.45833250E+04
DTLZ2A 9.30368517E-01 9.54595053E-01

only scalar cost is considered in ParEGOwhich may cause deviation
between the prediction and the true value. While in our paper, we
suppose there is a Gaussian noise when predicting objective values,
so we add the noise to the predictor. The predictor here is:

ŷr i = 1µ̂ + k ′(K + σ 2
noise I )

−1(y − 1µ̂)

where

µ̂ =
1T (K + σ 2

noise I )
−1y

1T (K + σ 2
noise I )

−11
Meanwhile, the error is redefined to measure the uncertainty

and therefore, it eliminates the error due to the noise [2]. We do not
consider error in each objective dimension but a total error with
regard to the scalar cost. The interpolating error is defined as:

ŝ2r i = σ̂ 2
r i

[
1 − k ′K−1k +

(1 − 1′K−1k)2

1′K−11

]
where

σ̂ 2
r i =

(y − 1µ̂)T (K + σ 2
noise I )

−1K(K + σ 2
noise I )

−1(y − 1µ̂)
n

The noise σ 2
noise is a regression constant and its value lies in the

range [0.001,1] [2]. All parameters in the model including θ and
the regression constant are obtained via maximum likelihood esti-
mation. Then, recommendations are generated by maximizing the
EI function to update the GP model. The whole iteration continues
until the termination is met.

3 RESULTS AND ANALYSIS
In order to compare our algorithm with ParEGO, we run both
algorithms 21 times on test problem MOP2, MOP3, OKA1, OKA2,
DTLZ1A and DTLZ2A which are described in ParEGO [6]. S-metric
(also known as Hypervolume, HV) [8] is used as the measurement.
We calculate the HV mean and standard deviation (SD) of all runs
to make clearer comparisons. Better results of our algorithm are
marked in bold font.

Table 2: SD of the S metric after 100 iterations

Problem noisy-ParEGO ParEGO

MOP2 2.65094669E-02 2.22394704E-02
MOP3 2.42874655E+01 1.29445734E+00
OKA1 2.65124976E+00 3.15407394E+00
OKA2 1.20951660E+00 5.19219873E+00

DTLZ1A 2.07737749E+04 6.42568464E+04
DTLZ2A 2.38271660E-01 3.47269666E-01

From Table 1, it can be seen that when we add noise to original
ParEGO, HV values change a lot. For problem MOP3 and DTLZ2A,
two algorithm perform similarly. While for problem MOP3, our al-
gorithm performs much better. As for the remaining ones, ParEGO
performs better. Our algorithm achieves smaller SD on most prob-
lems which can be found from Table 2. It is concluded that by adding
noise to ParEGO, especially when the number of objectives is larger
than 3 (including 3), the algorithm performance can be improved
a lot. When objective number is 2, ParEGO is more suitable for
optimizing them. On the whole, by adding noises while optimizing
multiobjective problems, algorithm can be more stable.

4 CONCLUSIONS
In cases of multiobjective black-box optimization, ParEGO fails to
consider noise. While in fact, the sampling points are often with
noise. An error also exists between the prediction and the true value,
so we assume there is an Gaussian error while predicting. According
to Gaussian reinterpolation, we approximate the objective space
more accurately. Results of S-metric verifies that when considering
the noise error, the multiobjective optimization model works better.
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