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ABSTRACT
This work chronicles research into the solution of portfolio prob-
lems with metaheuristic solvers. In particular, a genetic algorithm
for solving the cardinality constrained portfolio optimisation prob-
lem with minimum asset proportions is presented and tested on the
datasets of [1]. These datasets form benchmark instances used to
test portfolio optimisers and are based upon indices ranging from
31 to 225 assets. The results of the GA are indicatively compared to
solutions of [2] for a variety of minimum proportions, suggesting
that solutions exhibit certain clustering characteristics for higher
proportions. Further work is also discussed. This research is based
upon the first part of the ongoing PhD thesis of the first author.
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1 INTRODUCTION
Portfolio optimisation aims to efficiently choose optimal propor-
tions of portfolio assets subject to given constraints. The first ap-
proach, Modern Portfolio Theory (MPT), that solved modern “port-
folio problems” was introduced by Markowitz [8]. This so-called
mean-variance model of a financial portfolio supposes that the
historical returns of the assets influence their future returns. In
the real world, however, various constraints are commonly used
in order to make the problem reflect reality more closely and also
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seem more intriguing. Introducing these constraints often renders
the resulting portfolio problems NP-hard [7]. Computing solutions
to these problems thus often requires approximation algorithms
such as meta-heuristics [3] (or hybrids; e.g., the work of [6]). Meta-
heuristics are capable of finding optimal (or indeed, near-optimal)
solutions efficiently. The work of [2] introduced a modified integer
programming method to solve a Limited Asset Markowitz model.
Most notably, the authors give optimal solutions for each of the
datasets considered here; the solutions are highly nonlinear.

2 THE CARDINALITY CONSTRAINED
PROBLEMWITH MINIMUM PROPORTIONS

The cardinality constrained portfolio optimisation problem with
minimum asset proportions is as follows [3]:

Compute min r = σ 2 =
n∑
i=1

n∑
j=1

σi jxix j

subject to

R = (x, µ) =
n∑
i=1

µixi

n∑
i=1

xi = 1

n∑
i=1

zi ≤ K (1)

lizi ≤ xi ≤ uizi for i = 1, 2, . . . ,n (2)

zi ∈ {0, 1} for i = 1, . . . ,n,
where xi is the weight of asset i , µi is the expected return of

asset number i , R is the expected return of the portfolio and r is the
variance (risk). Note that σi j is the covariance between the returns
for assets i and j. Inequality (1) limits the number of assets to a
maximum of K and (2) imposes the lower li and upper ui bounds
on assets. The lower bound thus gives the minimum proportion
constraint (in practice,ui = 1) and is a common practical restriction.

The optimal solution to the above continuous problem is known
as the cardinality-constrained efficient frontier (CCEF).

3 COMPUTATIONAL RESULTS
We present preliminary results of a parallel GA to find the CCEFs
of the datasets in [1]. The GA is coded in R, using the ‘GA’, ‘foreach’
and ‘Rmpi’ packages, and attempts to optimise each CCEF point (i.e.,
(risk, return) pair) separately. The advantage of this approach is that
it is easily parallelisable and may run on as many cores as desired.
All results presented in this work were run on 64 cores of an HPC
cluster at the home institution. Note the CCEFs of [2], provided for
an illustrative comparison, has a 1% minimum proportion.

358

https://doi.org/10.1145/3319619.3321900
https://doi.org/10.1145/3319619.3321900


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Tahani S. Alotaibi and Matthew J. Craven

The GA operators used were linear ranking selection, random
position mutation and Laplace crossover, with crossover probability
0.5, mutation probability 0.4 and maximum number of iterations
2000n (n being the number of assets). The population size was 50,
and a given number of points were optimised to approximate the
true CCEF that gives the best possible trade off between risk and
return. The following figures give typical output - details of full
sets of runs are omitted due to space considerations.

Figure 1: A comparison between the sieved CCEF of [2] and
the GA solution for dataset (D5) [n = 225],K = 2 and li = 0.01.

Figure 1 is an example of GA output on instance (D5), K = 2
and minimum proportion 0.01. The GA originally used 250 points -
these have been processed by a sifting algorithm [4], resulting in
the points (green dots) with lowest risk for a given level of return
being kept and all other points discarded. In this figure, the blue
curve is the sifted CCEF of [2] for (D5) and K = 2. The minimum
proportions for both EFs on this figure are identical, and hence
the results are comparable, with the full spread of the blue curve
covered by the green dots. The green dots below the return range
of the comparison CCEF are due to the (blue) comparison CCEF
kinking to the right and so being removed by sifting.

Figure 2 gives an example of sieved GA output with instance (D4),
K = 3, and minimum proportion 0.3 (originally 500 points before
sifting). It can be seen that there is definite clustering behaviour
of the sifted GA-computed solution (green dots) at three locations
in the CCEF of [2], suggesting that the spread of green dots along
the CCEF is restricted by virtue of the relatively high minimum
proportion constraint. Unsurprisingly, the green dots are further
away from the CCEF as given risk/return values are hard to achieve
using a minimum proportion of 0.3.

4 CONCLUSIONS AND FURTHER RESEARCH
This work briefly presented a GA for solving cardinality constrained
portfolio optimisation problems with minimum proportion con-
straints, and results were given for two datasets. Further research
indicates that increasing the minimum proportion constraint causes
a considerable increase in computational, thus increasing problem
difficulty. To the best knowledge of the authors, there have been

Figure 2: A comparison between the sieved CCEF of [2] and
the GA solution for dataset (D4) [n = 98], K = 3 and li = 0.3.

no results previously presented using high minimum proportions
and a paucity of results for metaheuristics approximating solutions
for small K . These are the two main contributions of this work.

There have been solvers for varying types of portfolio optimi-
sation problems of assets with varying constraints (e.g., [3, 6]).
However, MPT approaches assume the underlying joint distribu-
tion of assets is normal, or ignore the fact that investors may prefer
other asset distribution characteristics than mean and standard
deviation. In fact, asset distributions of real-world financial data
are rarely normal and exhibit so-called “heavy tails” behaviour.
Copulae model each asset marginal and, in addition, interdepen-
dencies between assets (e.g., [5]). Current extensions of this work
include development of novel risk measures based upon copulas
and metaheuristic computation using these measures.
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