
Franken-Swarm: Grammatical Evolution for the Automatic
Generation of Swarm-like Meta-heuristics

Anna Bogdanova
University of Tsukuba

Tsukuba, Japan
ann.bogdanova@gmail.com

Jair Pereira Junior
University of Tsukuba

Tsukuba, Japan
jjunior013@gmail.com

Claus Aranha
Tsukuba University
Tsukuba, Japan

caranha@cs.tsukuba.ac.jp

ABSTRACT
In the last 20 years, literally dozens of optimization algorithms
based on swarm intelligence have been proposed. Particle Swarm
Optimization, Artificial Bee Colony, Cuckoo Search, Firefly Op-
timization, and Cat Swarm Optimization are just a small sample
of the exuberance of swarm-like algorithms. Although they differ
in implementation details, they all share a common structure: an
update rule is applied to each solution, followed by a drop rule that
decides whether to keep the updated solution or not. In this poster
we explore the idea of automatically generating swarm-like opti-
mizers. Our proposal is divided in two stages: First we decompose
popular, human-crafted, swarm-like optimizers such as PSO, CS,
ABC (as well as DE/GA) into a list of basic rules. Second, we use
Grammatical Evolution to procedurally generate variations on this
base structure by recombining these operators. We generate three
instances of algorithms, and observe that they have comparable
performance to DE and PSO. Our framework will be useful to gain
insight on the design space of meta-heuristics and the nature of
swarm-like algorithms.

CCS CONCEPTS
• Theory of computation → Genetic programming; • Soft-
ware and its engineering→ Search-based soft. engineering;

KEYWORDS
Grammatical Evolution, Swarm Intelligence, Automated Design of
Algorithms, Procedural Generation
ACM Reference Format:
Anna Bogdanova, Jair Pereira Junior, and Claus Aranha. 2019. Franken-
Swarm: Grammatical Evolution for the Automatic Generation of Swarm-like
Meta-heuristics. In Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321902

1 MOTIVATION
There is a vast number of variations on the design of population-
based search meta-heuristics. A common design pattern for these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321902

algorithms is to apply update operators on a set of candidate so-
lutions, followed by selection rules to decide whether to keep the
updated solution or not. The choice and design of such operators
can sometimes feel more like an art than a science, as dozens of
algorithms claim to use rules inspired by natural processes [2].

We are interested in exploring the design space of this type of
meta-heuristics. We want to find out whether an automated compo-
sition framework, given a set of components extracted from com-
mon meta-heuristics, could re-create the original methods, or gen-
erate completely new designs. The answers to this question would
be able to reinforce known rules-of-thumb about meta-heuristic
design, and show areas that have been so far unexplored. To answer
these questions, we must first find out a good base template, and a
representative set of operators to create the algorithm design space.
This poster is our first stab at this work.

1.1 Related Work
There is a growing interest in the automated design of metaheuris-
tics. For example, Bezerra et al. [1] describe a framework that au-
tomatically chooses components to assemble a MOGA. This work
treats the selection of components as a problem of meta-parameter
selection, and uses iRACE to select the MOGA components. Mi-
randa et al. [5] describes PSO using a formal grammar. Using gram-
matical evolution, they constructed PSO variations, optimizing
velocity equations but keeping firmly within the PSO framework.

2 PROPOSED MODEL
We formulate an abstract framework that describes an optimiza-
tion meta-heuristic in general terms, (Algorithm 1) and then use
Grammatical Evolution to realize instances of this framework as
procedurally generated algorithms. The Grammatical Evolution
part is implemented using the PonyGE library [3].

Our abstract meta-heuristic begins by generating a set of random
solutions to a real-valued optimization problem. At every iteration,
a set of update procedures are applied to each solution in turn.

Each update procedure is defined by a mutation operator, fol-
lowed by a crossover operator, and followed by a replacement opera-
tor. In this context, the mutation and crossover operators modify
the original solution, while the replacement operator determines
whether the modified solution will replace the original solution or
not. Table 1 lists the components in the current prototype.

Finally, at the end of each iteration, a drop procedure is applied
on the entire solution set. The drop procedure determines whether
each solution in the set should be "dropped" and replaced with an
entirely random new solution.

411

https://doi.org/10.1145/3319619.3321902
https://doi.org/10.1145/3319619.3321902

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Bogdanova, Pereira and Aranha

Algorithm 1 Abstract Meta-heuristic Framework
1: Select Operators using Grammatical Evolution
2: Initialize population as set of random solutions S
3: while Not reached maximum number of iterations do
4: for Each Solution s ∈ S do
5: for Each Update Procedure p ∈ P do
6: Use Operator Mutp to generate s ′ from s
7: Use Operator Crossp to generate s ′′ from s ′

8: Use Operator Replacep to choose between s ′′ and s
9: Drop Op. replaces some solutions in S with random ones.

Component Type Component List

Mutation Operator
Levy Mutation
PSO Velocity
DE Mutation

Crossover Operator
Exponential Crossover
Blend Crossover
None

Replacement Operator
Replace Always
Replace if Better
Replace if Better (CS version)

Drop Operator
None
Fixed Probability
Drop Worst

Table 1: Set of operators used to instantiate the abstract
meta-heuristic.

3 EXPERIMENTAL ANALYSIS
Using the proposed framework, we created 5 instances of meta-
heuristics for testing. First we re-created traditional DE and PSO
using the proposed Abstract Meta-heuristic model. Then we created
three original algorithms using Grammatical Evolution. The three
algorithms were created using different ways to evaluate their
fitness in the GE: Franken10 used the Ackley function on D50 for
10 generations, Franken30 used Ackley on D50 for 30 generations,
and Franken KA used the Katsuura function (F23) on D40 for 10
generations 1. The short evaluation time for each algorithm instance
allows us to evaluate a larger number of them during GE.

The description of the five instances is on table 2. The source code
for the framework, as well as the implementation instances and the
experiments are available online 2. From table 2 we can see that the
three instances obtained have strong similarities: All of them prefer
the greedy "Replace if Better" selection, and the guided DE and
PSO mutation operators. This may reflect the short training period
used. Also, the drop operator, present in algorithms such as CS and
ABC, was not used often. We compared the performance of these
instances on functions 20, 21, 22 and 24 of the BBOB library [4], and
the GE instances showed similar performance to the handcrafted
instances, which is quite encouraging for an early result.

4 DISCUSSION
Our results show that the training regimen and choice of fitness
function should be a priority for the continuation of this work. Our
1Note that "generation" here is the evaluation time of each meta-heuristic generated
by the grammar. The Grammatical Evolution itself ran for 30 generations in all cases.
2https://github.com/jair-pereira/GECCO19/tree/GECCO_Poster

Name Operators

DE Proc1: DE Mut, Xover: Exponential, Replace if Better
Drop: None

PSO Proc1: PSO Velocity, Xover: None, Replace Always
Drop: None

Franken30 Proc1: PSO Velocity, Xover: None, Replace If Better
Drop: Fixed Probability

Franken10
Proc1: DE Mut, Xover: Expo., Replace If Better (CS)
Proc2: PSO Velocity, Xover: None, Replace Always
Drop: None

Franken Ka
Proc1: DE mut, Xover: None, Replace if Better
Proc2: PSO Vel., Xover: None, Replace if Better (CS)
Drop: None

Table 2: Algorithm instances generated in this work. PSO
and DE were hand-crafted, the others genrated by GE.

Figure 1: Preliminary results of the procedurally generated
meta-heuristics: Franken30, Franken10 and FrankenKa.

early results are encouraging, and we plan to add further operators
and reproduce other classical methods in this framework as well.

REFERENCES
[1] Leonardo Bezerra, Manuel López-Ibañez, and Thomas Stützle. 2016. Automatic

Component-Wise Design of Multi-Objective Evolutionary Algorithms. IEEE Trans.
Evolutionary Computation 20, 3 (2016), 403–417.

[2] Felipe Campelo and Claus Aranha. 2018. EC Bestiary: A bestiary of evolutionary,
swarm and other metaphor-based algorithms. (June 2018).

[3] Michael Fenton, James McDermott, David Fagan, Stefan Forstenlechner, Erik
Hemberg, and Michael O’Neill. 2017. PonyGE2: Grammatical Evolution in Python.
In Proc. of the Genetic and Evolutionary Computation Conference Companion. ACM,
New York, NY, USA, 1194–1201.

[4] N. Hansen, S. Fink, R. Ros, and A. Auger. 2009. Real-parameter black-box optimiza-
tion benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829.
Inria. http://coco.lri.fr/downloads/download15.01/bbobdocfunctions.pdf Updated
February 2010.

[5] Péricles B. C. Miranda and Ricardo B. C. Prudêncio. 2018. A novel context-free
grammar for the generation of PSO algorithms. Natural Computing (mar 2018).
https://doi.org/10.1007/s11047-018-9679-9

412

https://github.com/jair-pereira/GECCO19/tree/GECCO_Poster
http://coco.lri.fr/downloads/download15.01/bbobdocfunctions.pdf
https://doi.org/10.1007/s11047-018-9679-9

	Abstract
	1 Motivation
	1.1 Related Work

	2 Proposed Model
	3 Experimental Analysis
	4 Discussion
	References

