
A Change Would Do You Good: GA-Based Approach for Hiding
Data in Program Executables

Extended Abstract†

 Ryan Gabrys
Naval Information Warfare Center

ryan.gabrys@navy.mil

Luis Martinez
Naval Information Warfare Center

lmmartin@spawar.navy.mil

ABSTRACT
We consider the application of a genetic algorithm (GA) to the
problem of hiding information in program executables. In a
nutshell, our approach is to re-order instructions in a program in
such way that aims to maximize the amount of data that can be
embedded while, at the same time, ensuring the functionality of the
executable is not altered. In this work, we focus on the problem of
identifying a large set of instructions which may be re-ordered, and
some initial results on the IA-64 architecture are then presented that
illustrate the potential benefit of such an approach.*

CCS CONCEPTS
• Security and privacy → Database and storage security; Data
anonymization and sanitization;

KEYWORDS
Information hiding, genetic algorithm, tracing

1 INTRODUCTION
Steganography is the process of embedding hidden information into
a cover object. One of the well-studied problems in the field of
steganography is to design an embedding scheme where the cover
object ``appears’’ the same before and after the embedding has
taken place. There are many previous works that design embedding
schemes by modifying the redundant data in digital cover objects
such as images and videos. [3]

This work is concerned with the less studied problem of designing
embedding schemes for program executables. We note that this
problem is fundamentally different than the problem of designing
steganographic schemes for digital media. Modifying even a single
line of executable code can cause the program to perform
drastically different, and in some cases, even break. Previous works
such as Hydan and Stilo [1,4] have proposed switching between
semantically equivalent instructions in order to embed data into
program executables. The fundamental drawback to such an

* Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

approach is that, since these techniques often makes use of unusual
instructions, detecting the presence of hidden information in cover
objects after these techniques have been applied is relatively
straightforward and several studies have shown that Hydan in
particular is easily detectable [2]. Rather than substitute equivalent
instruction sequences, and in order to make detection more
difficult, the approach taken here is to permute the order of
instructions.

This paper focuses specifically on the problem of identifying a
large set of pairs of assembly-level instructions such that for any
pair, when the order of the two instructions in the pair is switched,
the functionality and performance of the program is unchanged. We
call these instruction pairs interchangeable pairs, and one of the
primary goals in this work is to identify a large set of
interchangeable pairs that can be used to embed information.
Suppose {ij, ik} is an interchangeable pair of instructions where
instruction ij is the j-th instruction in the program and ik is the k-th
instruction in the program. Then, for simplicity and as a starting
point, we first focus our attention to the case where k=j+1 and k is
even. Therefore, under this setup, a program with 6 lines contains
at most 3 pairs of interchangeable instructions.

One straightforward way to embed information into an executable
program provided a set of interchangeable pairs is the following.
Suppose {i1, i2} are two instructions and that i1<i2 so that i1 is
lexicographically smaller than i2 according to some ordering. Then,
we can embed a single bit of information into this pair of
interchangeable instructions by changing the order of i1 and i2. For
instance, if i1 appears before i2 in the program we can read this
information as a 0 and otherwise if i1 appears after i2 we can read
this information as a 1. A more thorough discussion of the encoding
and decoding functions of our proposed embedding scheme is
deferred for a longer version of the work, and, in this work, we
restrict our focus to identifying large sets of instructions which can
be permutated for the purposes of embedding hidden information.

GECCO’19, July 13-17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). 978-1-4503-6748-6/19/07. . . $15.00
DOI: 10.1145/3319619.3321905

285

GECCO’19, July 13-17, 2019, Prague, Czech Republic Gabrys and Martinez

2

In Section 2, we discuss our approach for identifying sets of
instructions that can be permuted and we present preliminary
results in Section 3.

2 APPROACH
In order to find a set of interchangeable pairs of instructions, we
first generate a variant of the original program which has switched
the order of every interchangeable pair of instructions using a
genetic algorithm. From this variant, we produce a set of
interchangeable pairs by inspecting where the original program and
the variant differ. Finally, in order to validate that the order of each
interchangeable pair can be switched independently, for every pair
in the set, we create a variant of the original program by switching
the order of only a single interchangeable pair and verify the
program variant maintains its functionality.

The use of genetic algorithms for modifying program executables
has previously been explored in works such as [5,7,8]. Similar to
[5,8], we also make use of the ``Software Evolution’’ library to
produce our program variant. The algorithm modifies executables
through either of the following methods: a) two-point crossover, or
b) mutation. The cross-over method takes as input two randomly
selected variants of the same program. It replaces a portion of the
instruction sequence from one variant with a portion of the
instruction sequence from the other variant. The mutation method
operates by first randomly choosing an odd and an even number.
The odd number will be called the offset and the even number the
length. The GA then swaps every pair of instructions contained
within this region. For example, suppose the offset chosen is 5 and
that the length is 6. Then, the GA would swap 3 instructions. In
particular, it would swap i5 and i6, i7 and i8, and i9 and i10.

Our genetic algorithm maintains a pool of 100 candidates (or
variants of the original program). At each iteration, the algorithm
replaces the lowest scoring variant with a new variant that is either
the result of the two-point crossover or our mutation method. The
fitness function employed by our GA evaluates whether the
program variant compiles properly, and then it tests the
functionality of the program using a pre-defined set of tests. If the
program does not compile correctly, it is assigned a default score
of -200. Otherwise, if the program compiles but it returns an error
code after any of the fitness runs exit with an error code, the
program is assigned a fitness score of -100. Finally, if the program
compiles correctly and does not return an error code, then its fitness
score is equal to the number of tests that it successfully executed
scaled by the percentage of instructions swapped when compared
to the original binary (a higher percentage of swaps is preferred).
The GA is terminated after 100,000 executions.

3 RESULTS AND DISCUSSION
As a starting point, we evaluated the genetic algorithm discussed in
the previous section on the gcd program from the Linux coreutils
library. The GA generated set of 44 interchangeable pairs. Since
gcd is only comprised of 81 lines, roughly 54% of the lines of code

were permutable. Since the gcd program is only 1434 bytes, this
corresponds to an encoding rate of !!

"!#!∗%
≈ .004, which is less than

earlier proposed methods [1,4].

In order to increase the encoding rate, we extended our idea to
larger blocks of code. In particular, we generated mutations where
one block of code is swapped with an adjacent block of code. As a
concrete example, suppose i1, i2, i3, i4 represent instructions 1-4 in
our executable. Then, a block swap of size two could swap i1 and i2
with the instructions i3 and i4 so that the resulting sequence of
instructions would then be i3, i4, i1, i2. We refer to the pair {{i1, i2},
{i3, i4}} as a set of interchangeable pairs of block size 2. Note that
under this setup, the order of i1 and i2 as well as the order of i3 and
i4 could also be swapped leading to 4 potential ways of permutating
the instructions given interchangeable pairs of block size 1 and 2.
The results of modifying our GA to mutate gcd based upon larger
blocks of code is shown below.

As can be observed from the table, the benefit of using larger blocks
diminishes pretty quickly as the block size increases. Despite this
limited benefit, we note that by leveraging interchangeable pairs of
different block sizes, we were able to raise the encoding rate to
*#

"!#!∗%
≈ "

+,,
, which is less than a factor of two off from the results

reported in [1,4]. However, unlike [1,4], our method does not inject
unusual instructions and is therefore more difficult to detect. In
addition, we briefly note that it may be possible to identify larger
sets of interchangeable pairs in larger executables (since they
contain more instructions) so that the coding rate may be greater in
many cases.

REFERENCES
[1] B. Anckaert, B. De Sutter, D. Chanet, and Kan De Bosschere, ``Steganography for

executables and code transformation signatures,’’ In Proceeding of the 7th ICISS, Beijing,
China, pp. 425-439, 2011.

[2] J. Blasco, J.C. Hernandez-Castro, J.M.E. Tapiador, A. Ribagorda, and M.A. Orellana-
Quiros ``Steganalysis of Hydan,’’ In ECSPT,, SpringerLink, pp. 132-144, 2009.

[3] J. Cazalas, T.R. Andel, and J.T. McDonald, ``Analysis and categorical application of LSB
steganalysis techniques,’’ In The Journal of Information Warfare, 13(3), 2014.

[4] R. El-Khalil and A.D. Keromytis, ``Hydan: hiding information in program binaries,’’ In
ICICS, LNCS, Malaga, Spain, 2004, pp. 187-199, 2004.

[5] J. Landsborough, S. Fugate, S. Harding, ``Removing the kitchen sink.’’ In GECCO, ACM,
Madrid, Spain, pp. 833-838, 2015.

[6] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, ``Post-compiler software
optimization for reducing energy,’’ In SIGARCH Computational Architecture News, 42(1),
pp. 639-652, 2014.

[7] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, ``Automated repair of binary and
assembly programs for cooperating embedded devices,’’ In 18th ASPLOS, ΑCM, New York,
NY, pp. 317-328, 2013.

286

