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ABSTRACT 
We consider the application of a genetic algorithm (GA) to the 
problem of hiding information in program executables. In a 
nutshell, our approach is to re-order instructions in a program in 
such way that aims to maximize the amount of data that can be 
embedded while, at the same time, ensuring the functionality of the 
executable is not altered. In this work, we focus on the problem of 
identifying a large set of instructions which may be re-ordered, and 
some initial results on the IA-64 architecture are then presented that 
illustrate the potential benefit of such an approach.*  
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• Security and privacy → Database and storage security; Data 
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1 INTRODUCTION 
Steganography is the process of embedding hidden information into 
a cover object. One of the well-studied problems in the field of 
steganography is to design an embedding scheme where the cover 
object ``appears’’ the same before and after the embedding has 
taken place. There are many previous works that design embedding 
schemes by modifying the redundant data in digital cover objects 
such as images and videos. [3] 
 
This work is concerned with the less studied problem of designing 
embedding schemes for program executables. We note that this 
problem is fundamentally different than the problem of designing 
steganographic schemes for digital media. Modifying even a single 
line of executable code can cause the program to perform 
drastically different, and in some cases, even break. Previous works 
such as Hydan and Stilo [1,4] have proposed switching between 
semantically equivalent instructions in order to embed data into 
program executables. The fundamental drawback to such an 
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approach is that, since these techniques often makes use of unusual 
instructions, detecting the presence of hidden information in cover 
objects after these techniques have been applied is relatively 
straightforward and several studies have shown that Hydan in 
particular is easily detectable [2]. Rather than substitute equivalent 
instruction sequences, and in order to make detection more 
difficult, the approach taken here is to permute the order of 
instructions. 
 
This paper focuses specifically on the problem of identifying a 
large set of pairs of assembly-level instructions such that for any 
pair, when the order of the two instructions in the pair is switched, 
the functionality and performance of the program is unchanged. We 
call these instruction pairs interchangeable pairs, and one of the 
primary goals in this work is to identify a large set of 
interchangeable pairs that can be used to embed information. 
Suppose {ij, ik} is an interchangeable pair of instructions where 
instruction ij is the j-th instruction in the program and ik is the k-th 
instruction in the program. Then, for simplicity and as a starting 
point, we first focus our attention to the case where k=j+1 and k is 
even. Therefore, under this setup, a program with 6 lines contains 
at most 3 pairs of interchangeable instructions.  
 
One straightforward way to embed information into an executable 
program provided a set of interchangeable pairs is the following. 
Suppose {i1, i2} are two instructions and that i1<i2 so that i1 is 
lexicographically smaller than i2 according to some ordering. Then, 
we can embed a single bit of information into this pair of 
interchangeable instructions by changing the order of i1 and i2. For 
instance, if i1 appears before i2 in the program we can read this 
information as a 0 and otherwise if i1 appears after i2 we can read 
this information as a 1. A more thorough discussion of the encoding 
and decoding functions of our proposed embedding scheme is 
deferred for a longer version of the work, and, in this work, we 
restrict our focus to identifying large sets of instructions which can 
be permutated for the purposes of embedding hidden information. 
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In Section 2, we discuss our approach for identifying sets of 
instructions that can be permuted and we present preliminary 
results in Section 3. 

2 APPROACH 
In order to find a set of interchangeable pairs of instructions, we 
first generate a variant of the original program which has switched 
the order of every interchangeable pair of instructions using a 
genetic algorithm. From this variant, we produce a set of 
interchangeable pairs by inspecting where the original program and 
the variant differ. Finally, in order to validate that the order of each 
interchangeable pair can be switched independently, for every pair 
in the set, we create a variant of the original program by switching 
the order of only a single interchangeable pair and verify the 
program variant maintains its functionality. 
 
The use of genetic algorithms for modifying program executables 
has previously been explored in works such as [5,7,8]. Similar to 
[5,8], we also make use of the ``Software Evolution’’ library to 
produce our program variant. The algorithm modifies executables 
through either of the following methods: a) two-point crossover, or 
b) mutation. The cross-over method takes as input two randomly 
selected variants of the same program. It replaces a portion of the 
instruction sequence from one variant with a portion of the 
instruction sequence from the other variant. The mutation method 
operates by first randomly choosing an odd and an even number. 
The odd number will be called the offset and the even number the 
length. The GA then swaps every pair of instructions contained 
within this region. For example, suppose the offset chosen is 5 and 
that the length is 6. Then, the GA would swap 3 instructions. In 
particular, it would swap i5 and i6, i7 and i8, and i9 and i10. 
 
Our genetic algorithm maintains a pool of 100 candidates (or 
variants of the original program). At each iteration, the algorithm 
replaces the lowest scoring variant with a new variant that is either 
the result of the two-point crossover or our mutation method. The 
fitness function employed by our GA evaluates whether the 
program variant compiles properly, and then it tests the 
functionality of the program using a pre-defined set of tests. If the 
program does not compile correctly, it is assigned a default score 
of -200. Otherwise, if the program compiles but it returns an error 
code after any of the fitness runs exit with an error code, the 
program is assigned a fitness score of -100. Finally, if the program 
compiles correctly and does not return an error code, then its fitness 
score is equal to the number of tests that it successfully executed 
scaled by the percentage of instructions swapped when compared 
to the original binary (a higher percentage of swaps is preferred). 
The GA is terminated after 100,000 executions. 
 

3 RESULTS AND DISCUSSION 
As a starting point, we evaluated the genetic algorithm discussed in 
the previous section on the gcd program from the Linux coreutils 
library. The GA generated set of 44 interchangeable pairs. Since 
gcd is only comprised of 81 lines, roughly 54% of the lines of code 

were permutable. Since the gcd program is only 1434 bytes, this 
corresponds to an encoding rate of !!

"!#!∗%
≈ .004, which is less than 

earlier proposed methods [1,4]. 
 
In order to increase the encoding rate, we extended our idea to 
larger blocks of code. In particular, we generated mutations where 
one block of code is swapped with an adjacent block of code. As a 
concrete example, suppose i1, i2, i3, i4 represent instructions 1-4 in 
our executable. Then, a block swap of size two could swap i1 and i2 
with the instructions i3 and i4 so that the resulting sequence of 
instructions would then be i3, i4, i1, i2. We refer to the pair {{i1, i2}, 
{i3, i4}} as a set of interchangeable pairs of block size 2. Note that 
under this setup, the order of i1 and i2 as well as the order of i3 and 
i4 could also be swapped leading to 4 potential ways of permutating 
the instructions given interchangeable pairs of block size 1 and 2. 
The results of modifying our GA to mutate gcd based upon larger 
blocks of code is shown below. 
 

 
As can be observed from the table, the benefit of using larger blocks 
diminishes pretty quickly as the block size increases. Despite this 
limited benefit, we note that by leveraging interchangeable pairs of 
different block sizes, we were able to raise the encoding rate to 
*#

"!#!∗%
≈ "

+,,
, which is less than a factor of two off from the results 

reported in [1,4]. However, unlike [1,4], our method does not inject 
unusual instructions and is therefore more difficult to detect. In 
addition, we briefly note that it may be possible to identify larger 
sets of interchangeable pairs in larger executables (since they 
contain more instructions) so that the coding rate may be greater in 
many cases. 
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