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ABSTRACT

A large number of real-world multi-objective problems are subject
to uncertainty, leading to the need to develop optimization meth-
ods that deal with it appropriately. In this work, we extend the
decomposition-based algorithm to search for set-based robust solu-
tions with the achievement scalarizing functions. Our preliminary
work shows promising results that indicate our approach is able
to outperform state-of-the-art algorithms that aim for set-based
robust solutions.
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1 INTRODUCTION

When facing a real-world problem, the decision maker may not
always be interested in the best solutions, in particular, if these
solutions are subject to uncertainty. Thus, there exists an additional
challenge. One has to search not only for solutions with a good
performance but also that the solutions are capable of coping with
uncertainty, leading to the so-called set-based robustness (SBR) [1].

SBR is highly relevant when the decision maker has an aversion
towards uncertainty and would like to study the problem from a
worst-case perspective (e.g., critical applications).

To the best knowledge of the authors, there exist only two evolu-
tionary approaches that aim for SBR. Namely, extension for NSGA-II
[3] and SMS-EMOA [6]. In this work, we extend decomposition-
based EMOAs to the problem at hand. Our preliminary results
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indicate that our approach can outperform the state-of-the-art al-
gorithms in the Lamé superspheres problems (LSS). We measured
the performance of the algorithms in terms of the Ay indicator [4]
in decision space.

2 SET-BASED ROBUSTNESS

First, we define an uncertain multi-objective optimization problem
(UMOP). Here, we assume that the decision variables are given from
the set Q ¢ R" and the uncertainties in the problem formulation
are given as scenarios from a known uncertainty set U C R™. It is
also assumed that F : Q X U — Rk,

Definition 2.1. An UMOP P(U) := (P(¢),¢ € U) is defined as
the family of parametrized problems P(¢) := mig F(x, £), where
x€

F:Q0xU — RFand Q0 cR™.

In [1], the authors proposed a set-based definition for min-max
robust efficiency. Here, for a given feasible solution x, the worst
case of the objective vector is interpreted as a set, namely the
supremum of the maximization multi-objective problem of the
objective function over the uncertainty set.

Definition 2.2 ([1]). Given an UMOP P(U), a feasible solution
X € Q is called set-based minmax robust efficient (re) if there is
no x’ € Q\{x} such that Fy(x’) C Fy(x) — Rli, where Fy(x) =
{F(x,£): £ €U} -

The robust counterpart of an UMOP is the problem of identifying
all ¢ € U which are re. Thus, the robust counterpart problem can
be defined as

min sup F(x, &), (1)

XEQ fEU

In the following, we assume that the E:naé( F(x, ) exists forall x € Q.
ie

3 OUR PROPOSED APPROACH

One of the most popular approaches to solve an MOP with EMOAs
is to use a decomposition approach [5]. This allows using a family of
scalarizing functions to solve the problem. In this work, we extend
the decomposition methods to SBR by employing the achievement
scalarizing function (AASF) [7]. Note that any other scalarizing
function for set-based robustness could be used in our proposed
framework.

The key aspect of our proposed set-based robustness decompo-
sition EMOA (SBR-D-EMOA) is the evaluation of the individuals
(Algorithm 1). To assess the fitness Py, we evaluate all individuals
Px with each weight w for a reference point Z, a penalty factor
p =1x107", and then we select the best individual for each weight.
Px corresponds to the classical population in a MOEA and each
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Figure 1: Step by step of the method in decision space (left)
and objective space (right) for generations 25 and 50 (from
top to bottom).

component Py; j for i,j = 1,..., N measures the fitness of an indi-
vidual i and the scalarizing function with the weight j.

Algorithm 1 Individuals Evaluation

Require: F = [fi,.... fi], Px € RN*" R™ w ¢ RN*k 7 € RK
Ensure: Py e RNV
Py=0
for all x € Px do
for allw € W do

Pyij = pax i:T?’?,k[Wi(ﬁ(x’ =Zi)l+p él(IFi(x, &-Zil)

end for
end for

4 NUMERICAL RESULTS

We compare our approach on the LSS problems with k = 2 [2]
and decision uncertainty, —0.2 < &1, &, < 0.2. For these problems,
the nominal and the SBR efficient solutions are the same. For all
algorithms, we used a budget of 5, 000 function evaluations, a pop-
ulation of 10, uniform crossover and Gaussian mutation (pm = 0.2
and o = 0.2). Further, we used 10 subproblems, and 20 independent
executions.

Figure 1 shows the state of a representative execution of our
approach for generations 25 and 50. Left shows decision space and
the right shows objective space. Figure 2 shows the convergence
graph of the execution in terms of Az in decision space and the
mean of AASF.

Table 1 shows the mean and standard deviation of our approach
and those from [3, 6] of the A indicator in decision space to measure
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Figure 2: Convergence graph of the method measured with
Az in decision space (left) and the mean of the AASF (right).

the distance of the real solution and the one from the algorithm.
The arrows represent if our algorithm significantly outperforms (1),
is outperformed (|) or is indistinct (<) according to the Wilcoxon
rank sum test with confidence of 95%.

Table 1: A, comparison in decision space of SBR-D-EMOA.

Problem | SBR-D-EMOA | NSGA-II [3] SMS-EMOA [6]
a=0.25 | 0.1264 (0.0154) | 0.1139 (0.0272)<> | 0.2054 (0.0595)T
a=0.5 |0.0825(0.0092) | 0.1011(0.0112)T | 0.2106 (0.0601)T
a=1 0.0702 (0.0070) | 0.0878 (0.0161)T | 0.1964 (0.0567)7

5 CONCLUSIONS AND FUTURE WORK

In this work, we presented a decomposition-based approach for
SBR. Our approach has shown the benefits of using a decomposition
based approach when dealing with UMOPs. Further, the approach
has shown significantly better results than those in the start-of-
the-art. However, it is still required to test the approach in more
complex problems as well as to apply it to real-world applications.
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