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ABSTRACT
The copula-based EDA algorithms nowadays represent a promis-
ing technique for problem optimization in the continuous domain.
This paper provides a detailed analysis on how six key parameters
of the parallel copula-based EDA with model migration (mCEDA)
influence the quality of optimization. In order to improve the per-
formance of that kind of algorithm the most suitable setting of
these control parameters is evaluated on the well known CEC 2013
benchmark using inferential statistics.
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1 INTRODUCTION
Estimation of distribution algorithms (EDAs) belong to a class of
evolutionary optimization methods that explore the search space by
estimating and sampling an explicit probabilistic model of promis-
ing solutions. A new approach to building an efficient probabilistic
model that is based on copula theory was proposed in [8]. Copulas
can be used to model correlations within multivariate problems in
which the joint distribution is separated into the univariate mar-
ginal distributions and the correlation structure is expressed by the
copula function. This approach was later extended by introducing
a parallel implementation and a new concept of migration of the
probability model parameters [4].
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In this paper, the impact of six control parameters (copula type,
population size, selection rate, the number of islands, migration
rate and topology) of the mCEDA algorithm is analyzed.

2 EXPERIMENTALWORKS
The mCEDA algorithm (with the initial setting: Gaussian copula,
500 individuals, selection rate 20 %, 10 islands, migration rate 20
generations and bi-directional ring topology) [4] is chosen as a
reference algorithm (RA) in the systematical tuning of the control
parameters. Tested variants of mCEDA algorithm with a partic-
ular setup of control parameters are evaluated using CEC 2013
benchmarks [5] for 10 dimension. As suggested by the authors of
the benchmarks, the 51 independent runs on each function are
performed, with maximally 100000 fitness evaluations.

To achieve the well performed variant of RA for the particular
control parameters we used the two-sided Wilcoxon rank-sum test
as a proper statistical test. It is directed to compare the performance
of two algorithms – in our case RA and its algorithmic variant
for each of 28 functions of CEC 2013 benchmarks. The result of
comparison is expressed in the form: statistically better, worse or
indifferent (on the significant level α = 0.05).

Fig. 1–6 contain stacked histograms for all experiments devoted
to parameters tuning: green (top stack) means that RA was statisti-
cally better (B); red (bottom stack) means that RA was worse (W );
yellow (middle stack) means that RA is statistically indifferent (I )
according to the tested variant of RA. The values associated with
the color stacks give the number of benchmark functions for which
a given statistical outcome holds. The coefficient PB = B

B+W ex-
presses the relative value of B. The minimal value of PB determines
the best tested variant.

3 RESULTS
Type of Copula:

The candidate set of copulas contains six types: Gauss, Student,
Gumbel, Clayton, Frank and product copula. From Fig. 1 it is evident
that the Gaussian copula is significantly better than the others.
Population Size:

The tested size lies in the range from 125 to 2000 individuals.
The most suitable value is 250 individuals, see Fig. 2.
Selection Rate:

The tested selection rate lies in the range from 5 % to 60 %. Small
rates are significantly better – the best value is 20 %, see Fig. 3.
Number of Islands:

The entire population population consists of several subpopula-
tions, each of them is assigned to one island. Variants with a small
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Figure 1: Test results for different copula types.
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Figure 2: Test results for different population sizes.
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Figure 3: Test results for different selections rates.

number of islands perform better (see Fig. 4), 6 islands is the most
suitable setting.
Migration Rate:

The migration rate expresses the communication intensity
among the associated islands. The promising value is in the range
from 2 to 10 generations elapsed between consequent migrations;
10 generations led to the best results, see Fig. 5.
Topology:

The role of used topology is less significant. We report the best
results for the bi-directional ring, see Fig. 6. The other topologies
(uni-directional ring, random, star = island containing the best indi-
vidual is selected as the center, zero = no migration used) provide
similar results.
Comparison with other published algorithms:

In Fig. 7 the comparison of final version mCEDAf with the initial
mCEDA and with other published algorithms – namely IPOP-CMA-
ES [7], CMAES-RIS [1], PSO [9], LaF [2], SPAM-AOS [3] is reported.1
The pairwise t-test is used instead of Wilcoxon ranked-sum test.2

4 CONCLUSION
As the most important parameters influencing the mCEDAf per-
formance we identified: the type of copula, the number of islands,
the population size and the selection rate. The role of migration
rate and topology are less important. The Gaussian copula was
confirmed as the best variant. The most suitable parameters are:
250 individuals in the population, selection rate 20 % and 6 islands.

The final version mCEDAf utilizing the best-identified set of
parameters outperforms the initial version of mCEDA, and it is
comparable with PSO, LaF and SPAM-AOS algorithms. The IPOP-
CMA-ES and CMA-ES-RIS outperform the mCEDAf algorithm.

In the future, the advanced adaptation of the significant control
parameters will be investigated (see also [6]).
1The stacks are of the same meaning as in Fig. 1–6. – e.g. green stack gives the number
of benchmarks for which mCEDAf was significantly better than the other algorithm.
2From the other published algorithms, only mean, median and standard deviation
values of the tested functions are available.
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Figure 4: Test results for different number of islands.
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Figure 5: Test results for different migration rate.
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Figure 6: Test results for different topologies.
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Figure 7: Comparison of mCEDAf with other published al-
gorithms [1–4, 7, 9] using the pairwise t-test.
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