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ABSTRACT
One of the main tasks in agriculture is deciding which crop should
be planted on which field. Agricultural companies often cultivate
dozens of crops on hundreds of fields, making this problem ex-
tremely computationally complex. It was solved within evolution-
ary many-objective optimisation (EMO) framework. Objective func-
tions included: profit, yield risk, price risk, scatteredness, crop ro-
tation and environmental impact (total amounts of fertiliser and
pesticide used). As the decision variables were categories (crops)
and not real values, NSGA-III was adapted by changing the genetic
operators of mutation and crossover from numerical to categor-
ical. Optimisation was performed on the dataset provided by a
partnering agricultural company. Out of the resulting population
of solutions, characteristic crop configurations were chosen and
compared to the benchmark, i.e. company’s current strategy.
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1 INTRODUCTION
FAO’s estimates say that by the year 2050, we will need to increase
the food production by 70 %, to feed the world’s growing population
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[2]. For this reason, agriculture is shifting towards precision agri-
culture, where decisions are made on a high resolution, according
to local specifics of crops, climate and the terrain. One of the main
tasks that need to be optimised is concerned with crop configura-
tion. Namely, every year a farmer or an agricultural company needs
to decide which crop to plant on which field. This problem is com-
binatorial in its nature and its complexity grows exponentially with
the number of fields. What is more, there are many confronting ob-
jectives among which the decision-maker needs to find the optimal
trade-off.

2 EXPERIMENT DETAILS
The study was conducted in cooperation with a large agricultural
company that cultivates 5 different crops on 70 fields. The dataset
consisted of 3 years of company’s data and 8 years of crowdsourced
data (802 samples in total). To estimate the profitability of each
crop in the forthcoming season, probability density function (PDF)
of crop yields in the next season was determined using statistical
analysis of the historical data. Future prices were extrapolated
from 20-year long time-series from the stock market and profit
per crop was derived by multiplying the predicted yield and the
predicted price. Yield risk was calculated as the variance of the
PDF. It was a measure of yield instability, while the instability of
produce prices was calculated as the variance in the time-series and
added to the list of objectives as the price risk. The next objective
was to decrease scatteredness of fields with the same crop. The
corresponding objective function was calculated as the sum of
fields’ distances from the crop cluster centroid. Crop rotation is
another factor that was considered and the cost of planting each
crop, in relation to previously grown crop on the same field, was
extracted from the dataset. The last two objectives were related to
the environmental footprint of the crop configuration and were
calculated as the total amount of fertilisers and pesticides used,
respectively.

2.1 EMO with Categorical Genetic Operators
Due to its fast convergence and the ability to deal with many ob-
jectives, NSGA-III algorithm [3] was used in this study. Every com-
pany’s field had one decision-variable associated to it, which in-
dicated the crop that will be planted on that field. The number of
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Table 1: Performance of characteristic solutions

Profit Price risk Yield risk Fertiliser Pesticide Crop rotation Scatteredness
Max profit 28.80% 20.36% -13.06% -14.96% -12.52% -63.54% -30.28%
Min risk 9.81% 9.30% -9.08% -6.95% -3.24% -36.06% -21.31%
Sharpe 27.03% 14.49% -7.16% -11.25% -13.31% -10.89% -24.19%

decision-variables was thus equal to the number of fields (70), while
the number of objectives was 7, as explained in the previous section.
The mutation probability was 1/70, while the crossover probabil-
ity was 0.9. The set of categories for decision-variables included 5
most commonly grown crops in continental climates: wheat, maize,
soybean, sugar beet and sunflower. In this setup, NSGA-III could
not be used in its original form as it was designed for real-valued
decision variables. It is, as many other EMO algorithms, based on
the simulated binary crossover (SBX) [1] and polynomial PDF for
mutation. The interpretation of these genetic operators is that a)
the probability of offspring solutions is higher for solutions closer
to either parent and b) that finer changes in a solution, due to the
mutation, are more likely than the substantial ones. Rounding up
the real-valued solutions would renounce these principles, as it
would be susceptible to the ordering of categories and there is no
single metric that could be used for ordering of crops on a common
scale. The proposed solution is the following. Categories were sus-
pended in a multi-dimensional space, where their coordinates were
essentially the values of their objective functions. For categorical
crossover, a line was drawn between the parent categories and the
other ones were projected on it (Figure 1).

Figure 1: Categories suspended in a multi-dimensional
space, where the coordinates were set as the values of ob-
jective functions.

The problem could now be observed as real-valued along this
line and the usual PDF could be applied. As for mutation, categories
were also suspended in the multi-objective space and now their
distances from the parent category were observed. Polynomial PDF
was applied, where the probability of each category was determined

by its Euclidean distance from the parent category in the multi-
dimensional space. In this way, there was a higher probability of
children being closer to parents and one of the most important
concepts of evolutionary computation was preserved.

3 RESULTS AND DISCUSSION
There were 20 runs of the code, each having 500 generations, with
100 solutions in each one.We focused on 3most important strategies
from the company’s perspective: profit maximisation, cumulative
risk minimisation and Sharp ratio (profit/risk) maximisation. They
were compared to the benchmark (crop configuration proposed
by the company’s experts) and their relative performance is given
in Table 1. Values of other objective functions serve as a proof
that other stakeholders such as transport companies, government’s
environmental agencies or the society can benefit from such opti-
misation.

4 CONCLUSIONS
The topic of this study was crop configuration planning, one of
agriculture’s main problems that farmers are facing every year.
It was mathematically defined as a multi-objective portfolio opti-
misation problem, where the crop configuration of choice should
provide the optimal trade-off between 7 competing objectives. This
was solved using NSGA-III, but due to the categorical nature of
the decision variables (i.e. crops), genetic operators had to be ad-
justed. Categories were suspended in a multi-dimensional space
and their Euclidean distance and projections were used in mutation
and crossover. Optimisation yielded three characteristic strategies
for the decision-maker to choose from according to his/her prefer-
ences. The results show that NSGA-III can be extremely useful in
categorical optimisation problems and that there is a huge potential
in the application of EMO in agriculture.
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