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ABSTRACT

Many combinatorial optimization problems involve scheduling or
ordering work that will ultimately be completed by a company’s
employees. If solution quality is measured by a simple weighted
sum of the constraint violations for each employee, an optimizer
may produce solutions in which a small number of employees suffer
a highly disproportionate share of these violations. We present the
results of experiments in generating rosters whilst considering
fairness as an additional optimization objective.
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1 INTRODUCTION

Many academic optimization problems model real-world difficulties
faced by employers in scheduling and distributing work between
their workers. In rostering problems specifically, optimizers seek to
schedule workers to cover shifts whilst violating as few constraints
as possible and/or at the minimum cost possible.

Constraints in rostering problems may prevent impossible sched-
ules (e.g. two simultaneous shifts), or discourage undesirable sched-
uling (e.g. shifts without adequate rest between them). The quality
of a solution is typically measured by a weighted sum of the con-
straint violations for each employee. Optimizers that minimise this
metric alone can generate rosters where overall quality is achieved
at the expense of unfair distribution between workers’ individual
schedules.
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In real-world problems, significant disparity in the distribution
of constraint violations between employees would be considered
unfair, particularly by the employees allocated less desirable sched-
ules. Unfairness in generated rosters has obvious potential to signif-
icantly undermine the adoption of any automated rostering system,
and would clearly adversely affect employee morale and retention.

In this paper we explore fairness, defined as a deviation of in-
dividual workers’ schedule constraint violation penalties, as an
optimization objective. We use multi-objective optimization (MOO)
approaches to generate good quality solutions that are also fair.

2 UK JUNIOR DOCTOR ROSTERING
PROBLEM

We added a fairness objective to benchmark problem sets introduced
in [3]. These problem sets are doctor rostering problems simulating
hospital departments varying in size and complexity, ranging from
12 to 40 doctors. The problems differ in the number of doctors
available, the coverage requirements for a range of shifts throughout
the day, the number of doctors contracted to work fewer hours per
week, and the number and type of working patterns.

When generating rosters for these problems, the shift coverage
requirements and adherance to working patterns are considered
hard constraints. Soft constraints are used to represent a number
of restrictions imposed on doctors’ schedules by the UK’s national
Junior Doctor Contract. Examples of these constraints include a
limit on the length of the average working week, a minimum rest
period between shifts and a longer rest period after a sequence of
night shifts. The objective used in [3] is the minimization of a total
penalty for soft constraint violations:

N C
totalPenalty = Z Zpenalty;

i=1 j=1

(1)

where N is the number of employees, C is the total number of

constraints, and penaltyl( is a penalty for violating constraint j by
the schedule of employee i.

3 CHOICE OF FAIRNESS METRIC

Fairness in rostering problems is often defined as the balance in
workload between workers (e.g. total hours, days, or shifts)[6].
However, in [4] fairness is defined as the maximum number of
constraint violations in an individual schedule.

Results using this "worst case" fairness metric in MOO experi-
ments were adverse: solutions were no fairer when considering the
metric than without its consideration. Moreover, in some instances,
fairer solutions were produced when optimizing only for the global
minimum penalty. We posit that this is likely because undesirable
changes are not penalized unless the individual schedule currently
worst in the solution is affected.
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Figure 1: Average hypervolume values (instances 1-10)
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Figure 2: Convergence of hypervolume values (instance 6)
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Figure 3: Median attainment functions (instance 6)

50000 60000

We propose a more rigorous definition of fairness, that better
captures the distribution in constraint violations in a solution:

N C
l .
fairness = N Z(Zpenaltyl{ — penalty)?
i=1 j=1

@)

where penalty = 1/N Zfil chzl penaltyf is the average penalty.

4 ROSTERING APPROACHES

We examine two MOO methods: Pareto Simulated Annealing (PSA)
and Non-dominated Sorting Genetic Algorithm IT (NSGA-II). The
results of these methods are also compared to results obtained by
optimising total penalty and the fairness metric as single objectives
by a genetic algorithm. The genetic algorithm had the same setup
as NSGA-II with the difference that a single objective is considered
by the parental and environmental selection operator.
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4.1 Pareto Simulated Annealing

We applied the PSA procedure described in [1]. Initial solutions are
constructed as described in [3]. In each iteration of the algorithm
each solution is modified using a local operator, for example by
swapping a shift or series of shifts between employees. Only swaps
that do not violate hard constraints are allowed.

If a new solution dominates the old one, the old solution is
replaced by the new solution. Otherwise, it may replace the old
solution with a certain probability defined by a transition rule.
We tested four types of transition rules introduced in [5]: simple
product rule, product rule, Chebyshev rule and the weak rule. The
set of non-dominated solutions is updated to include new non-
dominated solutions.

4.2 NSGA-II

We used a variation of NSGA-II [2] without crossover. On each
iteration of the algorithm tournament selection is used to select
parent solutions. Offspring solutions are generated by copying
parent solutions and applying a local operator as mutation. Parent
and offspring solutions are then combined in one set, and sorted
based on levels of non-domination and crowding distance. Top 50%
solutions are selected for the next iteration.

5 EXPERIMENTAL RESULTS & DISCUSSION

Figure 1 depicts average hypervolume values achieved by different
optimization settings across 30 runs for all 10 instances after 50000
iterations (error bars are omitted since they were too small). On
almost all instances, NSGA-II performs as well or better than PSA.
A significant exception is instance 7, where it is outperformed by
PSA with the simple product rule.

NSGA-II has shown to converge quickest to a relatively high hy-
pervolume value on all problem instances as indicated for problem
instance 6 in Figure 2. This is due to better fairness metric scores
(Figure 3). Conversely, PSA outperformed NSGA-II in terms of total
penalty, except in the case where it is used with the week rule.
Thus, PSA can be preferable when lower values of total penalty are
desirable. Moreover, using MOO helped to achieve better values of
total penalty than optimising it as a single objective.
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