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ABSTRACT 
Event Takeover Values (ETV) measure the impact of each 

individual in the population dynamics of evolutionary algorithms 

(EA). Previous studies argue that ETV distribution of panmictic 

EAs fit power laws with exponent between 2.2 and 2.5 and that 

this property is insensitive to fitness landscapes and design 

choices of the EAs. One exception is cellular EAs, for which there 

are deviations of the power law for large values. In this paper, 

ETVs for structured and panmictic EAs with different population 

size and mutation probability on several fitness landscapes were 

computed. Although the ETVs distribution of pamictic EAs is 

heavy-tailed, the log-log plot of the complementary cumulative 

distributed function shows no linearity. Furthermore, Vuong’s 

tests on the distributions generated by several instances of the 

problems conclude that power law models cannot be favored over 

log-normal models. On the other hand, the tests confirm that cEAs 

impose significant deviations to the distribution tail.  
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1. INTRODUCTION 
In spatially structured evolutionary algorithms (EAs), interactions 

between the individuals are constrained by a network that 

connects the members of the population. These algorithms can be 

divided into two generic classes: cellular EAs (cEAs) [1] and 

island models [2]. It is argued that cEAs provide a better sampling 

of the search space and therefore improve the performance of non-

structured (panmictic) EAs in multimodal, non-linear and 

deceptive fitness landscapes [1][5]. The reason for the alleged 

better performance of cEAs may be the fact that they reduce 

genetic diversity loss rate during the run: individuals only interact 

with a restricted number of other individuals. Hence, good 

solutions diffuse slower through the network, requiring longer 

takeover times.  

Takeover times have some drawbacks: theoretical analysis is 

difficult when typical working mechanisms (recombination and 

mutation, for instance) have to be taken into account; they can 

only be measured in restricted experimental conditions with 

simplified algorithms; they are computed for a single solution and 

therefore do not offer much insight on the overall dynamics of the 

populations. In order to overcome (or complement) the limitations 

of takeover times, Whitacre et al. [6] proposed a new measure of 

the individuals’ influence on the dynamics of populations, called 

Event Takeover Value (ETV). ETVs evaluate each individual’s 

impact on the population using information from genealogical 

graphs. In short, an ETV of an individual id in generation t is the 

number of descendants of that individual that belong to the 

population in generation t, as described by Eq. 1: 
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where n is the population size,      the maximum size of the 

ascendants list (to compute ETV it is mandatory to keep an 

ascendants list for each individual) and   (   ) is the jth position 

in the individual i ascendants list. To avoid genetic hitchhiking, 

the ETVt of an individual is compared with one of its offspring. If 

the values are equal, the parent’s ETVt is set to 0. Formally, given 

two individuals     and    , genetic hitchhiking prevention is 

described by Equation 2: 
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Please note that ETVs are bounded by ,             -  ,   -, 
where n is the population size. For a detailed description of ETV 

and its calculation procedure please refer to [6].  

Whitacre et al. claim that ETV distributions of panmictic EAs are 

fitted by a power law with exponent in the range ,       -, while 

cEAs deviate from power laws for large values. These results are 

consistent with cEAs takeover times: they show that the 

probability of the population being taken by a single solution is 

lower for cEAs. The authors also claim that ETVs’ power law 

distribution is an emergent pattern of panmictic EAs, insensitive 

to design choices.  

This paper investigates and compares ETVs of panmictic and 

cellular EAs with different edge degree and under several 

experimental conditions. The main goal is to confirm if ETV 

distributions fit power laws and are indeed insensitive to 

population size and other design choices.  

2. EXPERIMENTS AND RESULTS 

In this paper, cEAs are structured by several regular graphs. 

Starting from a ring structure (   ),   is doubled by linking 

each individual to the neighbors of its neighbors, thus creating 

regular graphs with    *           + . Additionally, EAs with 

      (i.e., panmictic populations), where   is the population 

size, are tested. Synchronous cEAs are used: offspring are kept in 

a secondary population that replaces the old population when its 
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Figure 1. MMDP:     ;      ;       . ETV CCDF of 

panmmict EA (     ) and cEAs with    . 

size n’ is equal to n. The selection scheme is binary tournament, 

two-point crossover is the recombination method and bit-flip is the 

mutation type. In each iteration, each individual (parent1) is 

recombined with one of its neighbors (parent2). From the set of 

two children generated by crossover, one is randomly chosen and 

replaces parent1 if its fitness is better. The test set is composed of 

five functions with different characteristics: onemax, 2-trap, 3-

trap, 4-trap and MMDP. Each function is tested with different 

string size l for assessing scalability. Each configuration of each 

algorithm is executed 30 times in each problem instance. Success 

rates (number of runs in which the optimum is found) and 

statistics on best fitness values and number of evaluation to find 

the best solution are recorded and compared.  

The experiments and statistical analysis do not confirm the 

presence of power laws in the collected data. Figure 1 shows the 

log-log of the ETV complementary cumulative distributions 

(CCDF) of a cEA (    ) and a panmictic EA in an instance of 

the MMDP. Population size       optimizes EAs convergence 

speed (both algorithms attain the global optimum in every run) in 

this particular instance of MMDP. 

Distributions are clearly not linear through the whole range of 

ETVs. For the panmictic EA, a power law model was computed 

and the maximum likelihood used to estimate the exponent, which 

is       , below the values in [6]. Furthermore, a Vuong’s test 

comparing power law and log-normal models concluded that a 

log-normal distribution could also produce the ETVs: there is no 

evidence of power law in the data. The statistical tests were made 

with the “poweRlaw” R package [4], following guidelines in [3]. 

ETVs may not fit a power law but, as seen in Figure 1 (and the 

outcome is similar with other fitness landscapes), structuring the 

population has a clear effect on the distribution, namely for large 

sizes. Largest ETVs of cEAs are well below population size n, and 

in general they are bounded by ,     -, while panmictic ETVs 

very often cover the whole possible range of values ,   -. As 

degree k increases, the upper bound also increases and for      

its value is closer to  . Please note that these behavioural patterns 

were observed in every fitness landscape. 

From the large amount of data gathered with the tests, it is 

possible to identify other behavioural patterns. In general, 

increasing population size has strong effects on the distribution. 

Figure 2 shows the CCDFs of panmictic EAs with different 

population size n on the same instance of MMDP. Every 

configuration finds the best solution in every run and the EA with 

      requires less evaluations to find the optimum 

(considering median values):       is therefore the panmictic 

EA’s optimal population size (amongst the n values that were 

tested) for this instance of the problem. 

 
Figure 2. MMDP:     ;       . Panmictic EAs ETVs 

CCDFs with different population size. Optimal population: 

     . 

Please note that for      and      , the distribution is 

characterized by high probability values when ETVs are close to 

the upper bound         : i.e, it is highly probable that 

descents of a good solution takeover the entire population. With 

optimal size (     ), that probability decreases significantly, 

and above optimal population the distributions do not suffer much 

deviations from the       distribution. These results show that 

ETVs distributions strongly depend on population size and that 

they can detect below-optimal population size. 

3. CONCLUSIONS AND FUTURE WORK 

A statistical analysis of several ETVs distributions generated by 

panmictic populations on several fitness landscapes show that the 

presence of power law distribution in data cannot be claimed. 

These findings, however, do not diminish the importance of ETV 

in the analysis of EAs dynamic behavior. The results confirm that 

cEAs generate deviations from the panmictic heavy-tailed 

distributions, reducing ETVs upper bounds, which mean that they 

indeed restrict descendants of good solutions from dominating the 

entire population. Since power law exponents cannot be used to 

assess the effects of design choices in ETVs, the goal now is to 

devise other statistical measures to help investigate how 

population structure, population size and other parameters affect 

genealogical dynamics and ETVs and how that dynamics can be 

used understand the mechanisms behind efficient algorithms. 

 

ACKNOWLEDGEMENTS 

Work supported by FCT PROJECT [UID/EEA/50009/2013]. 

References 
[1] Alba, E., Tomassini, M. 2002. Parallelism and evolutionary 

algorithms. IEEE Trans. on Evol. Comp., 6(5), 443–462. 

[2] Cantú-Paz, E. 2001. Migration Policies, Selection Pressure, 
and Parallel EAs. Journal of Heuristics, 7(4), 311-334. 

[3] Clauset, A., Shalizi, C.R., Newman, M.E.J. 2009. Power-law 
distributions in empirical data. SIAM Review, 51(4), 661-703.  

[4] Gillespie, C.S. 2015. Fitting Heavy Tailed Distributions: The 
poweRlaw Pa[4]ckage. Journal of Statistical Software, 64(2), 
1-16 

[5] Tomassini, M. 2005. Spatially Structured Evolutionary 
Algorithms. Springer, Heidelberg. 

[6] Whitacre, J.M., Sarker, R.A., Pham, Q. 2009. Making and 
Breaking Power Laws in Evolutionary Algorithms 
Population. Memetic Computing, 1(2), 125-137.

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
(X
≥E

TV
) 

ETV 

k=2

k = n-1

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
(X
≥E

TV
) 

ETV 

n = 50
n = 100
n = 200
n = 400
n = 800

284


