Classical MOEAs for solving a multi-objective problem of
supply chain design and operation

ABSTRACT

This study focuses on a bi-objective mathematical programming
formulation of the supply chain design and operation problem,
which aims at simultaneously minimizing total costs and delays
in order delivery. For small instances, a commercial solver (Gurobi
Optimization) with different scalarizing techniques achieves a good
representation of the real Pareto front. In the perspective of treating
real size problems, NSGA-II and MOEA/D are applied to the same
instances. Computational results highlight mitigated performances
of both MOEAs and provide some insigts regarding future research
paths for adapting MOEAs to such complex problems.
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1 PROBLEM STATEMENT

In the last decades, the interest of production or logistics companies
has been attracted by the study of supply chain (SC), to improve
its profitability and operational efficiency. SC design and operation
problems can be formulated as optimization problems that might
involve multiple objectives. This study focuses on a bi-objective
mathematical programming model introduced in a recent work [3]
for a SC with three echelons (suppliers, factories, warehouses and
customers), manufacturing several products (Figure 1). The first
objective regards the total cost minimization, which includes invest-
ment (for plants and warehouses) and operation costs (production,
storage and transportation). On the other hand, the second objec-
tive consists in minimizing the total delays in order delivery to
customers, with respect to an established due date.

Accordingly, decision variables have to define the SC design and
operation features, which implies determining how many factories
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Figure 1: Illustration of a three echelon supply chain system

(in set J) and warehouses (in set K) to be opened, the quantities
of products (set P) manufactured in each factory and the raw ma-
terials (set M) or product flows within the three echelons of the
system, from suppliers (set I) to customers (set L). Constraints im-
pose limited production capacities in the factories as well as storage
capacities in both factories and warehouses. Furthermore, customer
orders must be met (in terms of product quantity).

The above-mentioned formulation can be solved through a com-
mercial solver, Gurobi, using different kinds of scalarizing tech-
niques. But it is expected that, for real size examples, the problem
complexity will not allow convergence in reasonable CPU times.
Therefore, the objective of this study is to adapt classical Multi-
Objective Evolutionary Algorithms (MOEAs) and to evaluate their
performance for solving such problem.

2 MOEAS ADAPTATION

Since the problem is NP-hard, the implementations proposed in this
work are rather canonical versions of MOEA/D [4] and NSGA-II [1].
MOEA/D uses a limited number of copies allowed in the replace-
ment step, while parent selection is probabilistically performed
either from the neighborhood of the target solution or within the
whole population. An archive stores non-dominated solutions, us-
ing s-energy as a pruning criterion. Both algorithms use the same
encoding technique, which must represent the whole SC structure
and internal flows. The chromosome has to be divided into two
sections, the first one regards factory/warehouse existence, while
the second one encodes product or raw material flows within the
three echelons. A simple binary encoding scheme is chosen for first
section.

With respect to flow variables, the priority-based encoding mech-
anism proposed in [2] for multi-product transportation problems
is adapted to the SC. This section has three parts, one for each
echelon (Figure 2). Each section is a permutation where the po-
sition indicates a combination {node-product} (the node is either
a source or destination) and the contained index is a priority for
being scheduled. An edge entering or leaving the selected node
is chosen according to an heuristic technique and the maximum
possible quantity of product (among supply and demand) is as-
signed to the corresponding flow. Finally, the supply/demand of
both the nodes involved are updated. Capacity constraints within
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Table 1: Computational results

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
Technique CPU-T HV, CPU-T HV, CPU-T HV, CPU-T HV, CPU-T HV,
Gurobi Opt. 2880 1.0 2420 1.0 1640 1.0 980 1.0 1920 1.0
MOEA/D 907 (10.39)  0.80 (0.02) 903 (7.70)  0.86 (0.02) 897 (5.88)  0.90 (0.01) 901 (7.64)  0.93(0.03) 904 (7.14)  0.64 (0.08)
NSGA-II 900 (7.77)  0.83(0.01) 903 (5.45) 0.87 (0.01) 909 (5.0)  0.93 (0.01) 906 (8.34) 0.951 (0.01) 904 (8.34)  0.639 (0.08)
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Figure 2: Encoding scheme

factories/warehouses have to be respected in this step. This process
is performed three times, in a backward fashion: customer demands
allow to determine product units in warehouses, which determine
the product flows from the factories and the manufactured quan-
tities, etc. Note that this encoding scheme always preserves the
feasibility of solutions. Regarding genetic operators, a two-point
crossover is applied to the first (binary) section of the chromosome,
while PMX is used for each of the three permutation separately.

3 EXPERIMENTATION AND RESULTS

Five small size instances (|I| = |J| = |K| = |L| = |[M| = |P| = 3)
were randomly generated and solved first with Gurobi with e-
constraints (using both total costs and delays as a constraint), and
two scalarizing functions: Tchebycheff and Augmented Achieve-
ment (AASF). 51 solutions obtained with weight vectors {(0,1), (0.02,
0.98), ..., (1, 0)}, were generated for each instance and strategy.
Gurobi converges for all instances in reasonable CPU times (<
1 hour for 51 points, running on Intel Core i7-4770 3.40GHz, 16
Gb RAM). Then the obtained solutions were combined and filtered
to build a reference set for evaluating MOEAs performances. Both
MOEAs were executed 11 times to study the median run. The pop-
ulation size and the generation number are set to 200 and 20,000
respectively, in order to have CPU times similar to those of Gurobi’s
shortest execution. The archive size is equal to 51. MOEA/D uses
AASF where the neighborhood equals 10% of the population size, 2
copies are allowed for replacement and the probability of selecting
parents within the population is 10%. Table 1 shows the median
value and standard deviation of CPU time (s) and the normalized
hypervolume (w.r.t. Gurobi’s reference front).

The first observation is that both MOEAs show identical behav-
iors. Although no statistical test was performed, the hypervolumes
obtained are quite similar and Figure 3 provides a clear illustration
of how close are both approximated fronts. Besides, their perfor-
mance is quite variable. Median hypervolumes range is from 64%
to 95% of the “real” Pareto front. In some cases (instance 4), the
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Figure 3: Complete fronts vs. MOEA/D vs. NSGA-II

solutions found reproduce quite closely the optimal front shape,
while in others (instance 3), both MOEAs only identify some local

fronts, showing poor convergence and diversity.

Discussion. The performances of MOEAs are not satisfactory enough
on these small instances. Both MO search engines (dominance and
decomposition) obtain similar results, so the solution encoding
might be responsible for these trends. The heuristic rule used for
edge selection was investigated (best cost or time, maximum regret,
random) without resulting in significant improvements. However,
an analysis of Gurobi’s solutions identifies the reason of these
convergence issues: the real Pareto front can be reached allowing
smooth changes in some flow values, which are possible with the
Mathematical Programming solver but not not with the chosen
encoding scheme (always sends the maximum possible flow).

4 CONCLUSIONS

Bringing solution strategies to real-world problems is a main con-
tribution of the multi-objective evolutionary optimization area. The
preliminary experiments presented here provide some guidelines
for future work on the SC design and operation problem. They
highlight the need for developing adequate encoding schemes for
complex industrial problems. Besides, hybridization between exact
techniques and MOEAs looks promising, if well designed.
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