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ABSTRACT
Finding meaningful structures in big data is challenging, especially
within big and noisy data. In this short paper, we present the re-
sults of the application of 6 different biclustering methods to a
massive human RNA-seq dataset with over 35k genes from over
125k samples. We assess which biclustering methods can handle
that large data and compare the results to the mini-batch k-means,
a popular clustering approach. Finally, we assess the importance of
evolutionary-based approaches in biclustering ‘big data’.

CCS CONCEPTS
• Information systems → Information retrieval; • Comput-
ing methodologies → Cluster analysis; Search methodologies;
Bio-inspired approaches; • Theory of computation→ Massively
parallel algorithms;
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1 INTRODUCTION
Biclustering is an increasingly popular data mining technique,
which seeks for sup-groups of rows and sub-groups of columns.
The challenge is to detect multiple different patterns, for exam-
ple ones that have the same value in a couple of row, columns, or
are monotonously increasing. The main application of biclustering
approaches is genetics. Biclustering is considered NP-hard.
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The major aim of this study is to verify how selected method can
handle a very large dataset. For this task a massive human genomic
dataset called ARCHS4 was used [3]. The input data contains over
35k rows and 125k columns. The paper compares the running times
and asks a question on the current standing and perspectives of
evolutionary algorithms (EA) in biclustering.

2 METHODS
The followingmethodswere applied to the genomic dataset ARCHS4:

Mini-batch K-means. A variant of a popular k-means clustering
method was used as a baseline. The method for calculating dis-
tances between the rows uses batches, what allows to speed up
computations and minimize memory utilization [13].

EBIC. Evolutionary search-based BIClustering [9, 11, 12] is a
recently published hybrid biclustering algorithm [6–8] that utilizes
multiple GPUs. The method, which is based on multiple evolution-
ary strategies, has previously presented high precision in multiple
patterns detection on benchmark datasets.

iBBiG. Iterative binary bi-clustering of gene sets (IBBiG) uses
genetic algorithm and iteratively identifies patterns in binarized
data [1]. Each bicluster is assigned score based on its homogeneity
score, which is determined using Shannon’s Entropy.

FABIA. Factor analysis for bicluster acquisition (FABIA) [2] uses
a multiplicative model for locating biclusters. Each bicluster is
modeled as a product of two sparse vectors Λ and Z plus additional
noise ϵ . The input matrix is modeled as a sum of p biclusters (1):

A =

p∑
i=1

λiz
T
i + ϵ = ΛZ + ϵ (1)

QUBIC. The original approach of Li et al. [5] was refactored,
speeded up and wrapped within Bioconductor package for R called
QUBIC [15]. The method uses qualitative representation of the data
and searches for heavy subgraphs in a graph with nodes represent-
ing genes and edges similarity between genes.

runibic. This recent method [10] integrates with Bioconductor
and speeds up UniBic, one of the leading biclustering methods. It is
based on detection of the longest common subsequences between
the indexes of multiple pairs of sorted rows [14].

Plaid model. Plaid model [4] assumes that the values of the input
matrix are sums of layers, according to (2)

ai j =
K∑
k=1

θi jkρikκjk (2)
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where K is the number of biclusters (called layers), and two other
binary parameters (ρik and κjk ) specify if a row i and a column j
are included in the bicluster. The lasts parameter θi jk determines
the contribution of the bicluster.

3 RESULTS
The original file with data from the experiment described in [3]
is provided in hierarchical data format (h5). After downloading
the data file from the repository, genetic data was decompressed,
normalized and log-scaled. The total size of the input dataset in
comma separated format was over 33 GB. Ourworking environment
included multiple Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz and
8 GeForce GTX 1080 Ti GPU devices (each GPU has 11 GB memory).
All considered methods were expected to load a dataset, perform
analysis and return (bi)clusters that included gene identifiers. The
methods were run with their default parameters, apart from EBIC,
for which two population sizes were used (5k and 10k), and mini-
batch k-means, for which multiple number of clusters was provided.

The running time and memory consumption of the analyzed
methods is presented in Fig. 1.

Table 1: Averaged running time and memory consump-
tion of mini-batch k-means and biclustering approaches on
ARCHS4 human dataset. (*) - notice that for EBIC only CPU
memory is included, but it also uses GPU memory.

Method Avg. time Avg. mem. Max. mem.
MiniBatchKMeans 467.1 mins 146637.3 MB 217737.9 MB
EBIC (5k/4 GPUs) 512.2 mins (*) 39252.0 MB (*) 53674.8 MB
EBIC (10k/8 GPUs) 833.1 mins (*) 47915.2 MB (*) 60710.1 MB
FABIA 3255.2 mins 172703.1 MB 187930.0 MB
QUBIC2 3568.7 mins 164555.59 MB 164555.59 MB
Plaid Reached memory limit of 250000 MB
runibic Didn’t converge in 120 hours (5 days)
iBBiG ERROR (long vectors unsupported)

Compared to the baseline clustering, only EBIC managed to
provide results with the similar time frame. Other biclustering
implementations were either at least 4 times slower, or crashed
because of the size of the data. EBIC was also memory efficient - it
utilized much less memory compared to other biclustering methods
and a baseline. This also held if total memory available on all GPU
devices was summed (the actual utilization was lower).

4 CONCLUSIONS
The main advantage of using biclustering in comparison with clus-
tering is smaller dimensionality of the resulting structures, as each
bicluster covers only a subspace of columns. This allows for a much
better interpretability and explainability of the findings compared
to clustering, especially for the datasets with multiple columns.

The major aim of this study was to verify if and how existing
biclustering implementations can handle large datasets. In this
paper we presented the results of analyzing a massive genomic
dataset, ARCHS4, with 6 different biclustering approaches with
the context of a clustering method. To our best knowledge, this
study involves the largest dataset that has ever been analyzed with

any biclustering method. We have observed that only half of 6
biclustering approaches considered provided any result within the
reasonable time frame.

Among the methods that successfully completed the task, an
evolutionary-based approach EBIC presented similar running time
and performance as the baseline clustering algorithm. The sec-
ond genetic algorithm included in this study, iBBiG, unfortunately
crashed prematurely.

To conclude, powerful methods based on GA have already been
proposed, but there is still a great potential of using evolutionary
algorithms in mining big data .
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