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1 INTRODUCTION

In this supplementary paper, we describe the evolutionary optimiser
and present some further results and analyses.

2 EVOLUTIONARY OPTIMISATION

Evolutionary optimisation is a search procedure inspired from the
theory of natural evolution. A generic algorithm starts with a ran-
domly generated population of solutions. At each step of evolution,
we select two parent solutions. These parents are combined to gen-
erate two children solutions. The combination operation is known
as cross-over. It essentially induces large changes in solutions, and
therefore enable exploration of the solution space. Each child solu-
tion is then mutated. The mutation operator is usually responsible
for making small changes in a solution, and thus this operation
promotes local search. The mutated children are then added to the
population. The population is then pruned to the desired size by
removing worst performing solutions. After a predefined number
of evolutionary steps or generations, the best solution in the final
population is the best approximation of the globally optimal so-
lution. A more detailed account of the algorithm is in Algorithm
1.

During evolution, for selecting two parent solutions (step 3 in
Algorithm ), we use tournament selection strategy. In this scheme,
n solutions are selected randomly, and then sorted according to
their fitness (i.e. function values). Then a solution is selected with
the probability 75(1 — 75)™, where 75 is a predefined probability
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Algorithm 1 Evolutionary optimisation.

Inputs
k : Number of hubs
T : Number of evolutionary steps or generations
N : Population size

Steps
1: P « RandomSamples(L, N) > Generate N random solutions from

feasible solution space £
2: fori=1—Tdo

3: {L!, L?} « TournamentSelection(P) > Select two parent
solutions
4: {c!, ¢?} « CrossOver(L!, L?) > Combine two parents and

generate two children
forj=1-—2do

¢/« Mutate(c/) > Mutate solution

R A

P« PU{c} > Add mutated child to population
end for
P « RetainBest(P, N) > Retain the best N solutions in the
population.
10: end for

and m € [0, n — 1] is the rank of the solution with 0 being the rank
of the best solution. In this paper, we set n = 3 and 75 = 0.7.

The crossover operator takes some parts of one parent and and
combines them with the complementary parts of the other parent
to construct one child. The second child has the complementary
mixture of elements from the parents in comparison to the first
child. If the selected parents L' and L? both have the same number
of hubs at the origin and destination, i.e. |[L}| = |L2] and |L31| = |LZ [,
for each group of hubs with a probability of 7. we set cL := L% and
¢2 := LL where ¢! and ¢? are the generated children and x € {o,d}.
And with a probability 1 — 7. we set ¢l := L and ¢ := I2.In
this paper, we set 7. = 0.8. It is possible that L! and L? may have
different number of hubs in each group: |LL| # |L2| and |L(11| # |Lfi|.
This makes cross-over challenging. In this case, when we assign
the groups, the total number of hubs for a child may be smaller or
greater than the desired total number of hubs k. We therefore repair
such a child to ensure that it is of size k. If the a child |c!| < k, with
probability % we add a feasible hub uniformly at random to either
the origin group x = o or the destination group x = d. The process
is repeated until |ci| = k. Similarly, when |ci | > k, we remove a
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hub from each group instead. This repair scheme ensures that two
valid children are generated through cross-over.

On a child solution ¢, the mutation operator may change group
sizes |cl| and |c(ii|, and/or any individual hubs. Firstly, with a muta-
tion probability 7,,, the group sizes are altered. This is performed
by sampling a Dirichlet distribution D(a,, a4), where o, and oy

are concentration parameters. We set ax = s X % with x € {o,d}.
This effectively sets the concentration of the distribution at the
same proportion of individual group sizes to the total length, and
the scaling factor s controls the variation from this proportion. In
our experiments, s = 10 produces desired variations in samples,
that is a small alterations in groups sizes. It should be noted that
a higher order of s reduces the amount of variation. A new sam-
ple from this distribution may change the original proportion that
sums up to one. We therefore scale the new proportion up to k to
determine individual group sizes |c}| and |c2|. This may result in
altering the total group size from k. To fix it, we remove or add to
each group with equal probability until the desired size |c| = k is
reached, and thus we ensure that a feasible solution is generated.
Secondly, alteration of any individual hub in ¢’ is performed with
a probability 7. In this case, we simply replace the current hub
with one of the feasible alternatives uniformly at random. As we
want to perform mutation infrequently, we set 7, = 0.2.

It is important to determine a stopping criterion for an evolution-
ary optimiser. Since, it is not guaranteed to converge to the global
optimum, we only perform a number of evolutionary generations
beyond which large improvement over the best solution is unlikely
and the progression towards the optimum plateaus. The number of
generations is usually determined by monitoring the convergence
rates over independent runs of the optimiser.

3 CASE STUDY: COMMUTE BETWEEN
EXMOUTH AND DIGBY

As a case study, we consider the commute between Exmouth and
Digby in Devon, UK. Figure 1, shows the total time required for a
journey by car or combined train and CAV system between OAs
in Exmouth (vertical axis) and WZs in Digby (horizontal axis).
There are many OA-WZ pairs between which there are no car
journeys. Nonetheless the train and CAV system allow a potential
link between them. It is visually evident that there are several car
journeys which are more time consuming than train, and therefore
placing a hub near such OA-WZ pairs may convert the car trips
into train journeys. Our goal here is to automatically estimate
the optimal locations for k hubs using the proposed evolutionary
optimiser.

It should be noted that the most popular destination is: the 4th
WZ (4th column in Figure 1) with identifier E00101374 that accounts

Rahat et al.

for 81.8% of the 788 car journeys. This is where the Sowton Indus-
trial Estate is located. We therefore expect that a good solution
would include a hub at this location.

Following a short experiment, we set the population size to
10k and the number of generations for the optimiser to k x 103.
Note that increasing the number of generations may not yield
large improvements (see for example Figure 2). As we generate
two children per generation, k x 103 generations results in 2k x

10® function evaluations. In Figure 3, we visualise the optimised
solution. The solution clearly prefers the most popular destination,

and also places hubs nearer major routes in Exmouth.

We also investigated the distribution of the hubs across OAs and
WZs for all the solutions proposed by the optimiser for k =5 — 15
(Figure 4). In many cases, for fixed k, the distribution of the number
of allocated hubs at OA and WZ remain the same across solutions.
This indicates that the optimiser may have located the optimal
distribution of hubs for respective k. Moreover, the number of hubs
allocated at WZ seems to be less than the number of hubs at OAs.
This is primarily because the 4th WZ accounts for 81.8% of the
car journeys: this hub appears in all solutions proposed by the
optimiser. Therefore it is sensible to put more hubs at Exmouth side
to ensure that more car trips are covered that make a journey to
the industrial estate. On the other hand, the hubs at Exmouth side
are generally placed near the station or major roads leading to the
station.

4 CONCLUSIONS

One of the difficulties in using trains for commuting to work is the
problem of travelling to and from a station. This is known as the first
and last mile problem. In this report we discuss a potential futuristic
solution to this problem with the use of CAVs. A commuter may
take a CAV from a designated station called hub and rapidly travel
to a station. So long as the total time to commute is less than a
car trip to destination, the commuter will choose the train. With
this, the challenge becomes where to place these hubs in order
to maximise the number of people travelling by train. We model
this problem as a combinatorial optimisation problem and propose
an evolutionary algorithm to solve it. The proposed optimiser can
locate a good estimate of the optimal distribution of hubs across
the origin and the destination stations. We demonstrated it on a
real world case study: the commute between Exmouth and Digby.
One of the major observations in this work is that there is a
natural trade-off between the number of hubs and the number
of car trips that may be saved. We will therefore consider this
as a multi-objective optimisation problem in future. In addition,
we considered the hubs to have unlimited capacity for simplicity.
Future work will incorporate this constraint in optimisation.
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Figure 1: On the left, the time required for the combined CAV and train system if there is a hub at every origin OA and a hub at
every destination WZ. On the right, the time required for a car journey is depicted. While performing optimisation, we only
use k hubs and compute appropriate times for each OA-WZ pairs, so the matrix on the left varies based on the decision vector.
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Figure 2: A sample convergence plot for k = 8 hubs. The progression plateaus after 5 X 10> generations, but we continue the
evolutionary process until k X 10> generations to improve the reliability of the optimiser. The grey square depicts the optimal
solution that after 5k x 10> generations. Clearly, 4k x 10% additional generations resulted in a minute improvement.
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Figure 3: Visualisation of the solution located by the optimiser for k = 8. On the left, we show the origin station: Exmouth, and
on the right, we show the destination station: Digby & Sowton. The red pins depict the stations, while the blue pins indicate
the hubs. The black borders show the boundaries of the OAs and WZs, and diffrent shades of colours show how many journeys
are taking place within the area. Interestingly, the hubs on the origin side are placed either close to the stations or nearer the
major roads in Exmouth (e.g. Salterton Road and Bradham Lane) that facilitate faster commute to the station. In addition,
there is a hub in the most popular destination: the 4th WZ.
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Figure 4: Distribution of hubs between OA (blue bars) and WZ (red bars) for all the optimisation runs for k = 5 — 15. The
standard deviation in the number of allocated hubs is shown with back vertical lines. The solutions clearly prefer small number
of hubs (1-3) at the Digby WZs.
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