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ABSTRACT 
Alzheimer’s Disease (AD) is a growing pandemic affecting over 
50 million individuals worldwide. While individual molecular 
traits have been found to be associated with AD at the DNA, RNA, 
protein, and epigenetic level, the underlying genetic etiology of 
AD remains unknown. Integrating multiple omics datatypes 
simultaneously has the potential to reveal interactions within and 
between these molecular features. In order to identify disease 
driving mechanism, a standardized framework for integrating 
multiomics data is needed. Due to high variability in size, 
structure, and availability of high-throughput omics data, there is 
currently no gold standard for combining different data types 
together in a biologically meaningful way. Thus, we propose a 
pathway-centric, neural network-based framework to integrate 
multiomics AD data. In this knowledge-driven approach, we 
evaluate different gene ontologies to map data to the pathway 
level. Preliminary results show integrating multiple datatypes 
under this framework produces more robust AD pathway models 
compared to models from single data types alone. 
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1 INTRODUCTION 
Rapidly declining costs of high-throughput instruments has yielded a 
proliferation of experimentally derived multiomics data. High dimensional 
multiomics data of different sizes and sparsity have become available and 
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multiomics data of different sizes and sparsity have become available and 
are being used to investigate genetic architecture underlying complex 
traits. However, most methods use a step-wise integration strategy, 
evaluating a single omics datatype a time, and thus fail to account for 
complex interactions occurring between different levels of gene 
regulation1. Thus, systematic integration of individual-level data is needed 
to gain insight into biological mechanism and reveal complex predictive 
patterns in clinical outcomes. Existing methods allow homogenous data, or 
omics datasets of the same type, to be integrated across studies. The lack 
of standardized methods for integrating multiomics data, both across and 
within studies2, has become more pronounced now as data-mining for 
omics imputation becomes increasingly accepted in genomics and 
bioinformatics communities. Given this, there is a need for a normalization 
framework that can integrate heterogenous data without compromising 
accuracy and without increasing type 1 error. 

1.1 Alzheimer’s Disease 
To date, genome-wide association studies have identified over 500 
candidate genes in AD. However, the few genes that have 
replicated explain disease in a fraction of the AD population. 
Evaluating single nucleotide polymorphism (SNP) variation alone 
has not given us the full picture of AD mechanism. Furthermore, 
while the hallmark amyloid beta plaque pathology in AD has been 
well-characterized, there are different molecular pathways across 
individuals posited to play a role in driving this common 
pathology3. Thus, to identify causal variation beyond the SNP 
level and to interrogate pathway heterogeneity underlying AD, 
integration of multiomics AD data is needed. In this study, we 
propose using a Grammatical Evolution Neural Network (GENN) 
to integrate multiomics data from the Religious Order Study and 
Memory and Aging Project (ROSMAP). Previous studies6 have 
shown GENN outperforms other machine learning methods in 
generating accurate interaction models, given robust 
approximation of correlation between features.  

1.2 The “Curse of Dimensionality”  
While the explosion of omics data hides more clues for 
understanding the underlying mechanism of complex traits, it also 
presents an analytical challenge in building meaningful statistical 
models to identify true significant variables. This “Curse of 
Dimensionality” hinders evaluation of all possible combinations 
of molecular features given computational limitations with respect 
to combinatorics and data sparsity. Previous studies have shown 
that reducing dimensionality of quantitative omics data by 
aggregating values, or taking the mean, across pathways to 
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generate “pathway scores” results in more accurate models of 
binary clinical outcome compared to full omics datasets alone4. 
Thus, we propose 1) using a variety of gene ontology 
knowledgebases to generate pathway scores for methylation, gene 
expression, and protein expression data and 2) simultaneously 
integrating all pathway scores using GENN.  

2 METHODS 
From the ROSMAP dataset, we created a case-control cohort of 
435 individuals who all had methyl array and RNA-seq data. 
Individuals with a cognitive score of 1-3 (mild cognitive decline 
and non-AD dementia) were classified as controls and individuals 
with a cognitive score of 4 or 5 (advanced cognitive decline and 
AD-dementia) were classified as cases. We first mapped probes 
from both data types to gene annotations; intergenic probes were 
mapped to the closest gene within 50kb. We then used biological 
knowledgebases Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Gene Ontology (GO), and Reactome to separately map 
genes to pathways. The KEGG annotated data mapped to 266 
pathways, GO mapped to 315 pathways, and Reactome mapped to 
247 pathways. To generate pathway scores, we first log 
transformed the data to normalize it, and then obtained the mean 
of the genes in each pathway. These means functioned as pathway 
scores, representing variation in aggregate for a single pathway in 
a datatype.  

2.1 Grammatical Evolution Neural Network 
We tested the hypotheses 1) models from integrated methylation 
and gene expression data have higher accuracies compared to 
models from each data type alone and 2) gene-pathway 
annotations from different knowledgebases contribute a bias in 
models by affecting error or accuracy. To test these hypotheses, 
we used each of the three knowledgebases separately to combine 
pathway scores from each data type alone and then combined. In 
total, we test 9 different models.   Specifically, we used GENN 
machine learning tool called Analysis Tool for Heritable and 
Environmental Network Associations5 (ATHENA) to integrate 
pathway scores. We assessed balanced accuracy, type 1 and 2 
error, and area under the curve (AUC) to evaluate models. The 
details of the grammatical evolution algorithm for GENN are: 1) 
The dataset is divided into five equal parts for 5-fold cross-
validation (4/5 for training and 1/5 for testing). Training begins by 
generating a random population of binary strings initialized to be 
functional GENNs. Both the model structure and the variables 
included are randomly generated. 2)  The GENNs in the population 
are evaluated using the training data and the fitness for each model 
is recorded. The solutions with the highest fitness are selected for 
crossover and reproduction, and a new population is generated. 3) 
Step 2 is repeated for a predefined number of generations. The 
overall best solution across generations is tested using the 
remaining 1/5 data and fitness is recorded.  4) Steps 2–4 are 
repeated four more times, each time using a different 4/5 of the 
data for training and 1/5 for testing. The best model is defined as 

the model identified the most over all five cross-validations.  
Network parameters were optimized. 

3 EXPERIMENTAL RESULTS 

 

4 CONCLUSIONS 
Preliminary results from this study indicate that using a 
knowledge-driven approach to integrating methylation array data 
and RNA-seq data via GENN results in more accurate models 
compared to models using only a single data type. Table 1 depicts 
the average accuracy of the integrated models to be 0.652, while 
the average accuracy of the methylation data models is 0.526 and 
the expression data models is 0.61. These early findings indicate 
that the differences in pathway annotations across these databases 
can affect the accuracy of the pathway interaction models. The 
integrated models from both GO and KEGG contained the 
“Vasopressin-regulation” pathway that has not previously been 
cited to play a role in AD to the best of our knowledge. 
Additionally, all three integrated models were enriched with 
putative AD pathways from the literature such as “Parkinson’s 
Disease” pathway, “Cytokine-signaling” pathway, and 
“Complement cascade” pathway. These positive results function 
as a validation and suggest our proposed method has the power to 
identify complex interactions between data types that have been 
missed due to a single data type approach. We will conduct further 
study with larger multiomics datasets and benchmark our approach 
against other integration methods utilizing pathway aggregation.  
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