
Towards Evolutionary Theorem Proving for Isabelle/HOL
Yutaka Nagashima∗

University of Innsbruck, Czech Technical University

ABSTRACT
Mechanized theorem proving is becoming the basis of reliable sys-
tems programming and rigorous mathematics. Despite decades of
progress in proof automation, writing mechanized proofs still re-
quires engineers’ expertise and remains labor intensive. Recently,
researchers have extracted heuristics of interactive proof devel-
opment from existing large proof corpora using supervised learn-
ing. However, such existing proof corpora present only one way
of proving conjectures, while there are often multiple equivalently
effective ways to prove one conjecture. In this abstract, we iden-
tify challenges in discovering heuristics for automatic proof search
and propose our novel approach to improve heuristics of automatic
proof search in Isabelle/HOL using evolutionary computation.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Formal software verification;

KEYWORDS
Theorem Proving, Isabelle/HOL, Genetic Algorithm
ACM Reference Format:
Yutaka Nagashima. 2019. Towards Evolutionary Theorem Proving for Is-
abelle/HOL. In Genetic and Evolutionary Computation Conference Compan-
ion (GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic.ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321921

1 BACKGROUND
1.1 Interactive Theorem Proving
Interactive theorem provers (ITPs) are forming the basis of reli-
able software engineering. Klein et al. proved the correctness of
the seL4 micro-kernel using Isabelle/HOL [3]. Leroy developed a
verified opimizing C compiler, CompCert, in Coq [6]. Kumar et al.
built a verified compiler for a functional programming language,
CakeML, in HOL4 [5]. In mathematics, mathematicians are substi-
tuting their pen-and-paper proofs withmechanized proofs to avoid
human-errors in their proofs: Hales et al.mechanically proved the
Kepler conjecture using HOL-light and Isabelle/HOL [2], whereas
Gonthier et al. proved of the four colour theorem in Coq [1]. In the-
oretical computer science, Paulson proved Gödel’s incompleteness
theorems using Nominal Isabelle [11].
∗Supported by the European Regional Development Fund under the project AI & Rea-
soning (reg. no.CZ.02.1.01/0.0/0.0/15_003/0000466)

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the As-
sociation for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321921

1.2 Meta-Tool Approach for Proof Automation
To facilitate efficient proof developments in large scale verification
projects, modern ITPs are equipped with many sub-tools, such as
proof methods and tactics. For example, Isabelle/HOL comes with
160 proof methods defined in its standard library. These sub-tools
provide useful automation for interactive proof development.

PSL. Nagashima et al. presented PSL, a proof strategy language
[9], for Isabelle/HOL. PSL is a programmable, extensible, meta-tool
based framework, which allows Isabelle users to encode abstract
descriptions of how to attack proof obligations.

Given a PSL strategy and proof obligation, PSL’s runtime sys-
tem first creates various versions of proof methods specified by the
strategy, each of which tailored out for the proof obligation, and
combine them both sequentially and non-deterministically, while
exploring search space by applying these created proof methods.

The default strategy, try_hard, outperformed, sledgehammer,
the state-of-the-art proof automation for Isabelle/HOL, by 16 per-
centage points when tested against 1,526 proof obligations for 300
seconds of timeout; However, the dependence on the fixed default
strategy impairs PSL’s runtime system: try_hard sometimes pro-
duces proof methods that are, for human engineers, obviously in-
appropriate to the given proof obligations.

PaMpeR. Nagashima et al. developed PaMpeR [8], a proof method
recommendation tool, trying to further automate proof develop-
ment in Isabell/HOL. PaMpeR learnswhen to usewhich proofmeth-
ods from human-written large proof corpora called the Archive of
Formal Proofs (AFP)[4]. The AFP is an online journal that hosts
various formalization projects and mechanized proof scripts. Cur-
rently, the AFP consists of 460 articles with 126,100 lemmaswritten
by 303 authors in total.

PaMpeR first preprocess this data base: it applies 108 assertions
to each (possibly intermediate) proof obligation appearing in the
AFP and converts each of them into a vector of boolean values.
This way, PaMpeR creates 425,334 data points, each of which is
tagged with the name of proof method chosen by a human en-
gineer to attack the obligation represented by the corresponding
vector. Then, PaMpeR applies a multi-output regression tree con-
struction algorithm to the database. This process builds a regres-
sion tree for each proof method. For instance, PaMpeR builds the
following tree for the induct method:
(1, (10, expectation 0.0110944442872,

expectation 0.00345987448177),
(10, expectation 0.0510162518838,

expectation 0.0102138733024))

where each of 1 and 10 in the first elements of the pairs repre-
sent the number of the corresponding assertion. For example, this
tree tells that for proof obligations to which the assertion 1 returns
false but the assertion 10 returns true, the chance of an experienced
proof engineer using the induct method is about 5.1%.

419

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Yutaka Nagashima

When a user of PaMpeR seeks for a recommendation, PaMpeR
transforms the proof obligation at hand into a vector of boolean
values and looks up the trees and presents its recommendations.

PaMpeR’s regression tree construction is based on a problem
transformation method, which handles a multi-output problem as
a set of independent single-output problems: For each obligation,
PaMpeR attempts to provide multiple promising proof methods to
attack the obligation, by computing how likely each proof method
is useful to the obligation one by one.

PaMpeR is not optimal to guide PSL. One would imagine that it is
natural step forward to improve PSL’s default strategy by allowing
PaMpeR to choose the most promising strategy for a given problem
instead of always applying the fixed strategy, try_hard, naively.

Despite the positive results of cross-validation reported by Na-
gashima et al., PaMpeR’s recommendation is not necessarily opti-
mal to guide an automatic meta-tool based proof search for two
reasons. First, PaMpeR recommends only one step of proof method
application, even thoughmany proof methods, such as induction,
can discharge proof obligations only when followed by appropri-
ate proof methods, such as auto, which is a general purpose proof
method in Isabelle/HOL. Second, when PaMpeR transforms amulti-
output problem to a set of single-output problems, PaMpeR pre-
process the database introducing a conservative estimate of the
correct choice of proof methods. In the above example, PaMpeR’s
pre-processor produces the following data point for all databases
corresponding to proof methods that are not induction.
not, [1,0,0,1,0,0,0,0,1,0,0,1,0,...]

We know that this conservative estimate wrongfully lowers the
expectation for other proof methods for this case. For example,
Isabelle/HOL has multiple proof methods for induction, such as
induct and induct_tac. Experienced engineers know induction
is a valid choice for most proof obligations where induct is used.
Unfortunately, it is not computationally plausible to find out all al-
ternative proofs for a proof obligation, since many proof methods
return intermediate proof obligations that have to be discharged
by other methods and even equivalently effective methods for the
same obligationmay return distinct intermediate proof obligations.
In the above example, even though both induct and induction
are the right choice formany proof obligations, they return slightly
different intermediate proof goals for most of the cases, making
it difficult to decide systematically if induct was also the right
method where human engineers used induction method.

2 EVOLUTIONARY PROVER IN
ISABELLE/HOL

We propose a novel approach based on evolutionary computation
to overcome the aforementioned limitations of method recommen-
dation based on supervised learning. Our objective is to discover
heuristics to choose the most promising PSL strategy out of many
hand written default strategies when applied to a given proof goal,
so that PSL can exploit computational resources more effectively.

We represent programs as a sequence of floating point numbers,
each of which corresponds to a combinations of results of applying
assertions to a proof obligation. PaMpeR leaned 239 proof methods
from the AFP and built a tree of height of two for each of them;
Therefore, we represent a program as a sequence of floating num-
ber of length 956, which is the total number of leaf nodes in all

regression trees. Then, we assign such sequence to each default
proof strategy. Our prover first applies assertions to categorize a
proof goal, then applies the most promising strategy for that goal.

As a training data set, we randomly picks up a set of proof obli-
gations from large proof corpora. And wemeasure howmany obli-
gations in this data set each version of our prover can discharge
given a fixed timeout for each obligation. The more proof goals in
the data set a prover can discharge, the better the prover is.

After each iteration, we mutate the program, which is a map-
ping function from a combination of results of assertions to the
likelihood of each strategy being promising to the corresponding
proof obligations. After each evaluation, we select provers with
higher success rates and leave them for the next iteration, while
discarding those with lower success rates.

We are still designing the details of the aforementioned experi-
ment. We expect that when combined with the goal-oriented con-
jecturing mechanism [10] this project leads to the meta-tool based
smart proof search in Isabelle/HOL initially proposed in 2017 [7].

REFERENCES
[1] Georges Gonthier. 2007. The Four Colour Theorem: Engineering of a For-

mal Proof. In Computer Mathematics, 8th Asian Symposium, ASCM 2007, Sin-
gapore, December 15-17, 2007. Revised and Invited Papers (Lecture Notes in Com-
puter Science), Deepak Kapur (Ed.), Vol. 5081. Springer, Berlin, Heidelberg, 333.
https://doi.org/10.1007/978-3-540-87827-8_28

[2] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison,
Truong LeHoang, Cezary Kaliszyk, VictorMagron, SeanMcLaughlin, Thang Tat
Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso,
Jason M. Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi
Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. 2015. A formal proof
of the Kepler conjecture. CoRR abs/1501.02155 (2015). arXiv:1501.02155 http:
//arxiv.org/abs/1501.02155

[3] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and SimonWinwood. 2010. seL4: formal
verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115.
https://doi.org/10.1145/1743546.1743574

[4] Gerwin Klein, Tobias Nipkow, Larry Paulson, and Rene Thiemann. 2004. . https:
//www.isa-afp.org/

[5] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: a verified implementation of ML. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.).
ACM, New York, NY, USA, 179–192. https://doi.org/10.1145/2535838.2535841

[6] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM
52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[7] Yutaka Nagashima. 2017. Towards Smart Proof Search for Isabelle. CoRR
abs/1701.03037 (2017). arXiv:1701.03037 http://arxiv.org/abs/1701.03037

[8] Yutaka Nagashima and Yilun He. 2018. PaMpeR: Proof Method Recommenda-
tion System for Isabelle/HOL. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE 2018). ACM, New York, NY,
USA, 362–372. https://doi.org/10.1145/3238147.3238210

[9] Yutaka Nagashima and Ramana Kumar. 2017. A Proof Strategy Language and
Proof Script Generation for Isabelle/HOL. In Automated Deduction - CADE 26
- 26th International Conference on Automated Deduction, Gothenburg, Sweden,
August 6-11, 2017, Proceedings (Lecture Notes in Computer Science), Leonardo
de Moura (Ed.), Vol. 10395. Springer, Cham, 528–545. https://doi.org/10.1007/
978-3-319-63046-5_32

[10] Yutaka Nagashima and Julian Parsert. 2018. Goal-Oriented Conjecturing for
Isabelle/HOL. In Intelligent Computer Mathematics - 11th International Confer-
ence, CICM 2018, Hagenberg, Austria, August 13-17, 2018, Proceedings (Lecture
Notes in Computer Science), Florian Rabe, William M. Farmer, Grant O. Pass-
more, and Abdou Youssef (Eds.), Vol. 11006. Springer, 225–231. https://doi.org/
10.1007/978-3-319-96812-4_19

[11] Lawrence C. Paulson. 2015. A Mechanised Proof of Gödel’s Incompleteness
Theorems Using Nominal Isabelle. J. Autom. Reasoning 55, 1 (2015), 1–37.
https://doi.org/10.1007/s10817-015-9322-8

420

