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ABSTRACT

In recent decades, deep learning approaches have shown impressive
results in many applications. However, most of these approaches
rely on manually crafted architectures for a specific task in large
design space, allowing room for sub-optimal designs, which are
more prone to be stuck in local minima and to overfit. Therefore,
there is considerable motivation in performing architecture search
for solving a specific task. In this work, we propose an initialization
technique for design space exploration of deep neural networks
architectures based on Latin Hypercube Sampling (LHS). When
compared with random initialization using standard datasets in
machine learning such as MNIST, and CIFAR-10, the proposed
approach shows to be promissory on the neural architectural search
domain, outperforming the commonly used random initialization.
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1 INTRODUCTION

Evolutionary approaches for the design of deep learning architec-
tures are often computationally demanding. Therefore, reducing
the number of evaluations necessary for achieving an optimal so-
lution is essential for allowing wide usage of these approaches in
practical applications. Many works have tried to improve conver-
gence with modifications in the algorithm such as crossover and
mutation methods, selection mechanisms and adaptive controlling
of parameter settings [3]. However, even though there is little re-
search in this field, initialization techniques can often improve the
convergence time as well as the quality of the final solution by
guaranteeing diversity in the initial population [6]. The problem
with random initialization is that often individuals are not evenly
distributed throughout the search region. Therefore, the evolution-
ary search is more prone to get stuck in a local optimum. In this
work, we propose the usage of Latin Hypercube Sampling (LHS)
[7] initialization technique for design space exploration in the deep
learning context. The proposed method shows to be promissory on
the Neural Architectural Search (NAS) domain, outperforming the
commonly used random initialization.

2 EVOLUTIONARY TECHNIQUE FOR DESIGN
SPACE EXPLORATION
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Figure 1: Final architecture for the neural network based on
convolutional and dense blocks.

The genome used is a fixed-length vector based on Davison [1]
work, which can be visualized in Figure 1. Each block encodes a
layer in the final architecture which can be activated or deactivated
by an boolean parameter, and contains information about the num-
ber of elements, the presence of Batch Normalization, the activation
function, and the dropout rate for the current layer from a finite set
of possible values. The convolution block differs by also including a
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boolean element which allows a 2x2 MaxPooling operation after the
layer. Therefore, the architecture used as a solution is constructed
by stacking these two kinds of blocks followed by an optimizer
block, which determines the optimizer used for training. By us-
ing integers to represent the possible values for each parameter,
an evolutionary search can be performed by using LHS [7] as an
initalization technique.

3 EXPERIMENTS
This work was developed using Distributed Evolutionary Algo-

rithms in Python (DEAP) [2] on MNIST [5] and CIFAR-10[4] datasets.

We evaluated two scenarios: first, a comparison between the LHS
approach and the random initialization on CIFAR-10; and second,
using a larger search space to find the best model with LHS ini-
tialization over CIFAR-10 and MNIST. The parameters for each
experiment are shown in Table 1.

Hyperparameter Name

First Experiment

Second Experiment

Number of Generations 20 30
Population Size 5 30

Max. Training Epochs 30 30

Max Convolutional Layers 4 6

Max Dense Layers 2 4
Max Conv. Filters p/ Layer 16 256
Max Dense Nodes p/ Layer 32 128
Crossover Rate 0.5 0.5
Genome Mutation Rate 0.2 0.3
Gene Mutation Rate 0.05 0.05

Table 1: Hyperparameter values from first and second exper-
iment.

4 RESULTS AND CONCLUSIONS

The results obtained from the experiments without any prepro-
cessing, leverage our approach to be a promissory feature for NAS
domain. In Figure 2, thirty (30) runs for each type of sampling
method (random and LHS) were performed, obtaining the mean
and standard deviation for each generation. The experiment shows
that on CIFAR-10, LHS outperforms the random sampling over
the same conditions. On the second scenario, we were searching
for a competitive result in common deep learning datasets, so we
performed a larger space search. In Figures 3 and 4, a total of 900
(30 population and 30 generations) models were trained for each
dataset with an early stop based on validation accuracy to prevent
overfitting, reaching the mean of 93.58% and 59.94% on MNIST and
CIFAR-10, respectively. The best generations were the 19th with
a mean of 97.46% for MNIST and 13th with a mean of 64.11% for
CIFAR-10.
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Figure 2: The first scenario, the central point represents the
mean, and the vertical line is the standard deviation on
CIFAR-10.
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Figure 3: The second scenario on MNIST with LHS. The box-
plot shows the median and interquartile range. The circles
represent outliers.
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Figure 4: The second scenario on CIFAR-10 with LHS. The
boxplot shows the median and interquartile range. The cir-
cles represent outliers.
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