
Evolutionarily-tuned support vector machines
Wojciech Dudzik

Silesian University of Technology
Gliwice, Poland

wojciech.dudzik@polsl.pl

Michal Kawulok
Silesian University of Technology

Gliwice, Poland
michal.kawulok@polsl.pl

Jakub Nalepa
Silesian University of Technology

Gliwice, Poland
jakub.nalepa@polsl.pl

ABSTRACT
Support vector machine (SVM) classifiers can cope with many dif-
ferent classification tasks but improperly selected hyperparameters
may deteriorate their performance. Moreover, datasets are getting
bigger in terms of their size and the number of features. This is often
coupled with low training data quality and presence of redundant
features, which can adversely affect classification accuracy and time
performance. Furthermore, high memory and computational com-
plexity of SVM training can be a limiting factor for its application
over huge datasets. We address these issues with evolutionarily-
tuned SVM, where we utilize evolutionary algorithms for optimiz-
ing hyperparameters, along with selecting features and training
instances. The performance of our method is compared on several
benchmark datasets to other methods for optimizing SVMs, as well
as to other classifiers. The results show that our algorithm gives
high performance in both accuracy and classification time when
compared with the state-of-the-art methods for SVM optimization.

CCS CONCEPTS
•Computingmethodologies→ Support vectormachines;Ge-
netic algorithms; Feature selection;

KEYWORDS
support vector machine, feature selection, training set selection,
memetic algorithm

ACM Reference Format:
Wojciech Dudzik, Michal Kawulok, and Jakub Nalepa. 2019. Evolutionarily-
tuned support vector machines. In Genetic and Evolutionary Computation
Conference Companion (GECCO ’19 Companion), July 13–17, 2019, Prague,
Czech Republic. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3319619.3321924

1 INTRODUCTION
SVMs are popular classifiers that were applied to solve a variety
of tasks. Nonetheless, using SVM is hard due to its sensitivity to
hyperparameters (M). Here, we consider radial basis function as
kernel, hence the SVM depends on two hyperparameters: kernel
width γ and a SVM slack variable C . As grid search (GS) approach
to tune M is computationally expensive, more efficient methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321924

were developed, including evolutionary algorithms (EA), such as:
particle swarm optimization [3] and genetic algorithms [1].

The problem of costly training can be tackled with proper selec-
tion of training set (T). Using a subset ofT (denoted asT ′) can be
sufficient, as only a small part of T is chosen as support vectors.
Methods used forT ′ selection can be divided into two groups: (i)
the ones whose complexity is dependent on the cardinality ofT , and
(ii) those that are independent fromT . The methods from the first
group exploit the information about the layout ofT , including clus-
tering method [8], and exploiting statistical properties ofT [4]. The
second group includes, among others, EA, with a highly effective
memetic algorithm to select training data for SVM (MASVM)[7].

The problem of redundant features can be solved with selec-
tion of a feature set (F). We cannot a-priori know which features
are useful for a classifier. In most cases, selecting a feature subset
(F ′) for SVM is coupled with hyperparameters optimization [5, 6].
Other interesting work is feature selection followed by alternating
memetic algorithm (FSALMA) presented in [2], where we optimize
M andT ′ on preselected F .

All these problems can make it hard to use SVMs. In this pa-
per, we propose a memetic algorithm ESVM, which unfolds to the
Evolutionarily-tuned SVM) for optimizingM,T ′ and F ′.

2 EVOLUTIONARY ALGORITHMS IN SVM
A general schema of ESVM is presented in Figure 1. This algorithm
is composed of three optimization phases, in which we optimize: (i)
M (differential evolution), (ii)T ′, (iii) F ′. First, our workflow starts
with ranking F using committee of mutual information, variance
thresholding, recursive feature elimination and stability selection,
averaging their results. These scores are used for the roulette wheel
initialization scheme of F ′ phase, where KF features are selected.
Initialization ofT ′ starts with choosing a random subset ofT in size
of KT ,M are set deterministically with a logarithmic step in range[
10−5, 103

]
. TheM phase starts with reducedT ′ and F ′ which are

best individuals assessed after initialization.
At the beginning of the M optimization, we create Q = 20 indi-

viduals with the crossover process, where hyperparameter values
of a new child become xa+b = xa + α · (xa − xb), where α is the
weight randomly drawn from the interval [−0.5, 1.5]. Next, each
individual is mutated, with probability Pm = 0.1, by modifying
a value x within a range x ∈ [x − u · x, x + u · x], where u is ran-
domly drawn from [0.0, 0.1]. Eventually, we select the Q fittest
individuals to maintain a constant size of population. The process
of evolution lasts till there is no improvement in the average fitness
of population, otherwise we switch to optimizeT ′.

The phases ofT ′ and F ′ are similar. In both cases, a population
is processed with crossover operator in which for each selected
pair of individuals two sets (of F ′ or T ′) are summed. Next, we
select no more than KT (or KF) elements. Then each individual is

165

https://doi.org/10.1145/3319619.3321924
https://doi.org/10.1145/3319619.3321924
https://doi.org/10.1145/3319619.3321924

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Wojciech Dudzik, Michal Kawulok, and Jakub Nalepa

Rank F
using committee of

methods

Initialize
evolutionary
algorithms

Optimize
M

Stop?Optimize
T'Stop?

Retrieve
best SVM

yes

no

no

yes

Optimize
F' Stop?

no

yes

Figure 1: Flowchart of ESVM.

subjected to mutation with the probability Pt = 30% for T ′ and
Pf = 50% for F ′. Mutation forT ′ consists in replacing ft = 20% of
examples with random ones fromT . For F ′, ff = 10% features are
replaced by ones that are above mean in feature ranking used for
initialization. In both algorithms, we exploit information about the
previous individuals to enhance the current solutions and adaptively
grow KT and KF . At the end, the selection rule from M phase is
used. The switching scheme lasts till one of the phases improves
fitness. If no improvement can be made, we perform regeneration
of all individuals. After R = 5 regenerations, we take the best model
from the entire evolution process.

3 EXPERIMENTS AND DISCUSSION
All of the experiments were run on Intel i5-6500 CPU. Formeasuring
fitness, we rely on area under the receiver operating characteristic
curve (AUC), measured on validation set. We picked three balanced
binary datasets: Ionosphere 351× 34 (vectors by features), Madelon
2600 × 500 and Gisette 7000 × 5000. The datasets were divided
into 5 folds containing training, validation and test set (Ψ) in 3:1:1
proportion, respectively. The presented results are average scores
over all 5 folds. Each EA was run 10 times per fold. The best AUC
scores and times are boldfaced in tables.

As it can be seen in Table 1, ESVM yields best results on the
Gisette and Madelon datasets in comparison to other methods. Our
algorithm performs best, regarding classification time, being multi-
ple times faster than any other technique, while having high AUC
scores at the same time. This fast classification was results from
smaller number of support vectors and reduced F . We performed

Table 1: Results obtained for benchmark datasets.

Set Algorithm Training
time [s]

Test set
AUC

Classification
Time of Ψ [ms]

Io
no

sp
he
re FSALMA 0.34 ± 0.15 0.953 ± 0.042 0.12 ± 0.06

GS 0.29 ± 0.03 0.974 ± 0.024 0.25 ± 0.07
ESVM 0.82 ± 0.45 0.950 ± 0.036 0.08 ± 0.03
MASVM 0.26 ± 0.23 0.964 ± 0.031 0.17 ± 0.05

M
ad
el
on

FSALMA 87.7 ± 15.8 0.814 ± 0.036 21.2 ± 4.1
GS 196.6 ± 0.4 0.656 ± 0.027 280.8 ± 4.0

ESVM 215.1 ± 154.3 0.861 ± 0.054 7.0 ± 3.4
MASVM 366.9 ± 182.9 0.578 ± 0.104 194.6 ± 18.6

G
is
et
te

FSALMA 358 ± 446 0.993 ± 0.002 817.9 ± 779.5
GS 11147 ± 768 0.996 ± 0.002 8453.9 ± 704.2

ESVM 388 ± 499 0.996 ± 0.002 175.9 ± 144.1
MASVM 1015 ± 227 0.986 ± 0.013 5026.6 ± 18.8

Table 2: Comparison of ESVMwith other popular classifiers.
Scores are AUC on Test set averaged over 5-folds.

Algorithm↓ Set → Ionosphere Madelon Gisette
ExtraTree 0.987 0.698 0.996
Lasso 0.907 0.640 0.996
KNN 0.920 0.581 0.988

Logistic Regression 0.918 0.630 0.996
ESVM 0.950 0.861 0.996

Wilcoxon test to verify whether the differences between the re-
sults obtained with ESVM and other algorithms are statistically
significant. Test shows p < 0.001 for all algorithms on Madelon and
Gisette datasets while on Ionosphere p > 0.05 was observed for
comparison with GS and FSALMA and p < 0.005 when compared
with MASVM. Thus our algorithm is statistically different for two
out of three presented datasets.

In Table 2, we compared our ESVMwith other popular classifiers.
For KNN we used K = 5 and for ExtraTree the number of trees was
set to N = 100. In case of Lasso and Logistic Regression, we used
cross-validation for hyperparameter tuning. ESVM outperformed
other methods on Madelon dataset and achieved the same as others
high AUC for Gisette dataset while being only slightly worse on
Ionosphere dataset, where it outperformed all but ExtraTree. These
scores show ESVM as competitive method.

4 CONCLUSIONS
In this paper, we introduced a new memetic algorithm that is the
first to select M, T ′ and F ′. The experiments were run on three
benchmark datasets, so we should still be careful in premature
conclusions. Nonetheless, the results of ESVM show it has a great
potential for providing high AUC scores and giving the best classi-
fication times among evolutionary methods.

ACKNOWLEDGMENTS
This work was supported by the National Science Centre (DEC-
2017/25/B/ST6/00474). WD was co-financed by the European Union
through the European Social Fund (POWR.03.02.00-00-I029) and by
the Silesian University of Technology (02/020/BKM18/0155).

REFERENCES
[1] J.-S. Chou, M.-Y. Cheng, Y.-W. Wu, and A.-D. Pham. 2014. Optimizing parame-

ters of support vector machine using fast messy genetic algorithm for dispute
classification. Expert Systems with Applications 41, 8 (2014), 3955–3964.

[2] W. Dudzik, J. Nalepa, and M. Kawulok. 2018. Automated Optimization of Non-
linear SVMs for Binary Classification. In InCoS. Springer, 504–513.

[3] X. Zhang et. al. 2015. SVM with parameter optimization by a novel hybrid method
and its application to fault diagnosis. Neurocomputing 149 (2015), 641 – 651.

[4] L. Guo and S. Boukir. 2015. Fast data selection for SVM training using ensemble
margin. Pattern Recognition Letters 51 (2015), 112–119.

[5] C.-L. Huang and C.-J. Wang. 2006. A GA-based feature selection and parameters
optimizationfor SVM. Expert Systems with Applications 31, 2 (2006), 231 – 240.

[6] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee. 2008. Particle swarm optimization
for parameter determination and feature selection of support vector machines.
Expert Systems with Applications 35, 4 (2008), 1817 – 1824.

[7] J. Nalepa and M. Kawulok. 2014. A Memetic Algorithm to Select Training Data
for SVM. In GECCO ’14. ACM, New York, NY, USA, 573–580.

[8] X.-J. Shen and et. al. 2016. Large-scale support vector machine classification with
redundant data reduction. Neurocomputing 172 (2016), 189–197.

166

	Abstract
	1 Introduction
	2 Evolutionary algorithms in SVM
	3 Experiments and Discussion
	4 Conclusions
	Acknowledgments
	References

