
Impact of subcircuit selection on the efficiency of CGP-based
optimization of gate-level circuits

Jitka Kocnova, Zdenek Vasicek
Brno University of Technology, Faculty of Information Technology, IT4I Innovation Centre of Exellence

Czech Republic
ikocnova@fit.vutbr.cz,vasicek@fit.vutbr.cz

ABSTRACT
Various EA-based methods have been applied to design and op-
timize logic circuits since the early nineties. The unconventional
methods, however, typically suffer from various scalability issues
preventing them to be adopted in practice. Recent improvement in
the fitness computation procedure connected with the introduction
of formal methods in the fitness evaluation such as SAT solvers or
BDDs enabled pushing of the limits forward and approaching the
complexity of industrial problems. It was demonstrated that EAs
can be applied to optimize gate-level circuits consisting of thou-
sands of gates without introducing any decomposition technique.
Despite that, the efficiency decreases with increasing the circuit
complexity. This problem can be managed by adopting the concept
of the so-called iterative resynthesis based on the extraction of
smaller sub-circuits from a complex circuit, their local optimization
followed by the implantation back to the original circuit. Recently,
a method based on the computation of so-called cuts was proposed.
In this paper, we propose an alternative approach which is able to
select more complex sub-graphs consisting of more nodes and more
inputs. Compared to the previous method, the proposed approach
allows to improve the efficiency of the optimization. More than 9%
and 20% reduction was observed on the highly optimized logic and
arithmetic circuits, respectively.

KEYWORDS
Cartesian Genetic Programming, Logic Synthesis, Combinational
Circuits

ACM Reference Format:
Jitka Kocnova, Zdenek Vasicek. 2019. Impact of subcircuit selection on the
efficiency of CGP-based optimization of gate-level circuits. In Proceedings
of the Genetic and Evolutionary Computation Conference 2019 (GECCO ’19
Companion). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3319619.3321926

1 INTRODUCTION
Logic synthesis, as understood by hardware community, is a process
transforming a high-level description into a gate-level or transistor-
level implementation. Due to the complexity, the synthesis process
is typically broken into a sequence of steps. An important part of
the whole process is logic optimization. Its goal is to transform a
suboptimal solution into an optimal (or, at leasts near-optimal) gate-
level implementation with respect to the given synthesis goals. Due
to the scalability issues, the problem is typically represented using a

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
2019. ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321926

suitable internal representation. Current state-of-the-art logic syn-
thesis tools, such as ABC, represent circuits using a directed acyclic
graph denoted as and-inverter graph (AIG) [1]. This representation
is simple and scalable and leads to simple algorithms, but suffers
from an inherent bias in representation. While eight of ten possible
two-input logic gates may be represented by a single AIG node,
XOR and XNOR gate require three AIG nodes each. Efficiency of
synthesis is then limited as it mostly fully relies on transformations
disallowing to increase the number of AIG nodes. Unfortunately,
the ability to capture XOR gates is essential for efficient representa-
tion of arithmetic and XOR-intensive circuits. It has been shown
that there exists a huge class of real-world circuits for which the
synthesis fails and provides very poor results [3].

1.1 Evolutionary synthesis of logic circuits
Various evolutionary approaches have been recently successfully
applied to optimize logic circuits [3, 4]. In [4], Cartesian Genetic Pro-
gramming (CGP) was used to optimize large combinational circuits.
The evolution was conducted directly at the level of common gates.
Substantially better results were obtained compared to the state-of-
the-art synthesis working on AIGs. On average, the method enabled
a 34% reduction in gate count on when evaluated on an extensive
set of benchmark circuits and executed for 15 minutes. Efficiency
of this method, however, deteriorates with the increasing number
of gates due to the bad scalability of representation – substantially
more generations are required to reduce circuits consisting of more
than 104 gates. To address this problem, the concept of so-called
logic resynthesis was applied in [2]. The approach is based on iter-
ative optimization of smaller portions of the original circuit. The
optimized circuit is mapped to standard gates and optimized us-
ing the proposed method that extracts a relative small sub-circuits
that are subsequently optimized by CGP. The original sub-circuit
is then replaced by its optimized variant provided that there is any
improvement at the global level and the whole process is repeated.
These steps are iterated until either a predefined amount of time is
exhausted or a required improvement is observed, depending on
the design scenario. It was shown in [2] that this method naturally
improves scalability of CGP especially in the case of large circuits
consisting of thousands of gates. Compared to the direct application
of CGP [4], substantial improvement was achieved.

1.2 Goal of this work
This work is focuses on the further improvement of the algorithm
used to extracts sub-circuits from the original circuit proposed in [2].
We hypothesize that the optimization of much complex sub-circuits
may lead to better improvements.

377

https://doi.org/10.1145/3319619.3321926
https://doi.org/10.1145/3319619.3321926
https://doi.org/10.1145/3319619.3321926

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Jitka Kocnova, Zdenek Vasicek

Algorithm 1: Evolutionary optimization
Input: Combinational circuit G , set of constraints E
Output: Optimized circuit G′

1 while termination condition not satisfied do
2 S ← GetSubcircuit(G , E) ;
3 S ′← OptimizeByCGP(S);
4 if cost (S ′) < cost (S) then
5 G ← (G \ S) ∪ S ′ ;

6 return G

2 EVOLUTIONARY RESYNTHESIS
The principle of the evolutionary resynthesis of logic circuits is
shown in Algorithm 1. The algorithm inputs a combinational circuit
at the level of common gates represented by an acyclic graph G
consisting of |G | nodes.

At first, a subcircuit S is selected from the original circuit G.
This subcircuit is then optimized by means of CGP independently
on its context. In case of an improvement, i.e. the cost of S ′ is
better compared to the S , the S ′ replaces the subcircuit S . This
procedure is repeated until a termination condition is satisfied. The
set of constrains E is used to setup the parameters of GetSubcircuit
procedure.

Cuts were applied to select the subcircuits in [2]. This, however,
produces subcircuits with a relatively small volume. In this paper,
we propose to implement GetSubcircuit procedure similarly as
proposed as in [3]. The selection starts with a randomly chosen
node д ∈ G that is included in S . Then, the neighboring nodes of
the nodes already included in S are iteratively added into S . Two
parameters are used to restricting the size of S , smin and smax
(smin ≤ |S | ≤ smax). The process ends when smax is exceeded or
no more nodes remain.

3 RESULTS
The CGP is initialized as proposed in [4] to fairly evaluate the
results. The termination condition is the number of iterations, in
our case the resynthesis was applied 2 · 104 times. The parameters
of OptimizeByCGP are as follows: l-back is equal to the number of

gates of S , 5 · 105 generations are used, CGP topology: one row, the
number of columns equals to |S |, the population size is 2, common 2-
input gates are used. The proposedmethod is comparedwith [2] and
the CGP-based global optimization method [4]. The total number of
evaluations, i.e. the number of generated and evaluated candidate
solutions, is the same in all cases and equals to 1010. smin was set
to 5 and smax was limited to 104. The experiments were executed
on a set of benchmark circuits from IWLS 2005. For each circuit,
five independent evolutionary runs were executed.

Table 1 summarizes the obtained results. It is shown that the
proposed method performs substantially better compared [2] to es-
pecially for circuits having large depth. As evident, the resynthesis-
based approach is able to improve the scalability of CGP. CGP
working at global level (the last two columns) have problems with
some instances and no reduction was achieved.

4 CONCLUSIONS
Proposed method gives better results than the previously published
method. Both methods substantially outperform the CGP applied
globally. Future work will be mainly devoted to a further improve-
ment of selection of cuts.

5 ACKNOWLEDGMENTS
This work was supported by The Ministry of Education, Youth and
Sports of the Czech Republic – INTER-COST project LTC18053 and
by the Brno University of Technology project FIT-S-17-3994.

REFERENCES
[1] Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-

Strength Verification Tool. In Computer Aided Verification. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 24–40.

[2] Jitka Kocnova and Zdenek Vasicek. 2019. Towards a Scalable EA-based Optimiza-
tion of Digital Circuits. In EuroGP’19 (LCNS 11451). 81–97.

[3] Lukas Sekanina, Ondrej Ptak, and Zdenek Vasicek. 2014. Cartesian Genetic Pro-
gramming as Local Optimizer of Logic Networks. In 2014 IEEE Congress on Evolu-
tionary Computation. IEEE CIS, 2901–2908.

[4] Zdenek Vasicek. 2015. Cartesian GP in Optimization of Combinational Circuits
with Hundreds of Inputs and Thousands of Gates. In EuroGP’15 (LCNS 9025).
139–150.

Table 1: Evaluation of the proposed method on a set of industrial benchmarks optimized by the state-of-the-art synthesis
(column best ABC). The performance is given as the best as well as average achieved reduction, i.e. the number of removed
gates, for the proposed method and two methods available in the literature.

input (best ABC) resynthesis [2] resynthesis – proposed global method [4]
Benchmark inputs outputs gates depth average best average best average best

aes_core 789 532 21128 20 2.9% 2.9% 4.7% 5.5% 0.6% 1.7%
ethernet 10672 10452 60413 23 0.5% 0.5% 0.9% 1.1% 0.0% 0.0%
i2c 147 127 1161 12 9.2% 9.2% 16.9% 17.8% 10.0% 10.7%
systemcdes 314 126 2601 25 4.8% 5.0% 9.2% 10.7% 9.1% 9.9%
usb_phy 113 73 452 9 13.9% 14.0% 16.7% 17.6% 12.2% 12.2%

average (logic benchmarks) 15620 20 6.3% 6.4% 9.7% 10.6% 6.3% 6.5%

sqrt32 32 16 1462 307 22.3% 24.3% 12.6% 15.4% 3.0% 3.0%
diffeq1 354 193 20719 218 11.5% 11.5% 13.1% 15.7% 0.0% 0.0%
div16 32 32 5847 152 15.7% 15.8% 20.5% 27.9% 0.0% 0.0%
hamming 200 7 2724 80 28.6% 30.1% 40.1% 40.9% 14.6% 14.6%
revx 20 25 8131 171 14.5% 14.5% 16% 17.8% 0.0% 0.1%

average (aritmetic benchmarks) 8956 148 18.2% 19.2% 20.5% 23.5% 3.5% 3.5%

378

	Abstract
	1 Introduction
	1.1 Evolutionary synthesis of logic circuits
	1.2 Goal of this work

	2 Evolutionary Resynthesis
	3 Results
	4 Conclusions
	5 Acknowledgments
	References

