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ABSTRACT
This paper presents a novel distributed on-line evolutionary learn-
ing algorithm for swarm robotics that can cope with very limited
hardware, as expected from using a swarm of low cost robots. The
algorithm is able to deal with hardware constraints over the com-
munication bandwidth by sharing only a limited amount of infor-
mation, using a recombination operator inspired from bacterial
conjugation. Using a classic foraging task, we show that the algo-
rithm converges towards stable and efficient solutions even though,
as expected, it converges slower when the bandwidth is limited.
However, we also show that the proposed algorithm performs a
trade-off between convergence speed and absolute performance
that depends on the amount of bandwidth available. The recom-
bination operator yields better performance if communication is
limited, as recombination makes the most from the genetic material
already present in the population. In other words, quality outweighs
convergence speed if the bandwidth is limited.
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1 ALGORITHM
The HIT-EE algorithm (short for "Horizontal Information Transfer
for Embodied Evolution") differs from other embodied evolution
algorithms [1] by introducing two new ideas. Firstly, a maturation
time is set that allows any new individual to remain protected while
its quality with respect to a reward function is estimated. Combined
with a sliding window, it allows to maintain an estimation of the
average reward of a particular behaviour that can be compared to
other.

Secondly, we introduce a recombination operator, termed the
transfer operator, that can send only a subset of one’s genome.
Whenever the sender is deemed better than the receiver, the bits of
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genome sent will overwrite the corresponding bits in the receiver.
The amount of information sent will then depends on the avail-
able bandwidth. Depending on the trans f erRate (ts f for short),
the receiver’s genome may be slightly altered (ts f = ϵ , very low
bandwidth), recombined (moderate bandwidth) or completely over-
written (ts f = 1.0, large bandwidth).

Our algorithm is loosely inspired from bacterial conjugation,
which is a mechanism for horizontal gene transfer used by bacteria.
Similar to bacteria where genes are sent from a living donor to a
receiver though physical contact, two robots within communication
range may send a subset of their control parameters (cf. also [2] for
a classic GA implementation of the same idea).

Algorithm 1 The HIT-EE algorithm
1: mutationRate =m //m is a value between 0.0 and 1.0
2: transf erRate = t // t is a value between 0.0 and 1.0
3: maturationDelay = d // d is an integer value (strictly positive
4: дenome .initialize() // e.g. random values
5: r eward = 0 // similar to "fitness value"
6: aдe = 0
7: newGenome = False
8: while forever do
9: move() // execute the agent’s controller for one step.
10: reward = updateReward() // e.g.: use a sliding window of size t
11: if aдe > maturationDelay then
12: aдe = aдe + 1
13: broadcast(дenome ,transf erRate ,r eward ) // (subset of) genome
14: incomingPackets = listen() // returns received packets since last iteration
15: for p in incomingPackets do
16: if p.reward >= reward then
17: copy p.genomeBits to дenome // i.e. conjugation
18: mutate дenome usingmutationRate
19: newGenome = True
20: end if
21: end for
22: if newGenome == True then
23: r eward = 0, aдe = 0, newGenome = False
24: end if
25: end if
26: end while

2 EXPERIMENTS
The obvious question is how the HIT-EE algorithm can cope when
communication is constrained. We use a foraging task where the
reward (i.e. the fitness function) is given by the number of items
captured by a robot. Each robot is controlled by a simple Perceptron
which weights are evolved. We perform a first set of experiments
with two different values for the transfer operator. We experiment
with transfer rates where either half (ts f = 0.5) or most (ts f = 0.9)
of the genome (ie. the Perceptron’s weights) can be transferred (cf.
Table 1 for other settings). Mutation rate is arbitrarily set to zero:
while this may be sub-optimal in terms of exploration, this allows
a clear understanding of the effect of the transfer operator.

Results for the two different settings are presented in Figures 2
and 3. The ts f = 0.50 and ts f = 0.90 variants both converge to a

109

https://doi.org/10.1145/3319619.3321928
https://doi.org/10.1145/3319619.3321928
https://doi.org/10.1145/3319619.3321928


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Nicolas Bredeche

Figure 1: Arena with 150 robots (small dots) and 100 items
(big dots). The fitness function for each robot counts the
number of items captured (i.e. foraging task).

Table 1: Control parameters

Parameter Value Comments

General parameters
Population size 150
Number of items 100

Arena size 1400x800
Robot size 5x5

Sensor&communication range 16
iterations 800400 max.2000 gens
replications 64

Controller and encoding
Sensory inputs 163 16 sensors
Motor outputs 2 left and right
Genome size 326

HIT-EE parameters
maturation time 400
sliding window 400

transfer 0.5 or 0.9
mutation 0.0 no mutation here

Figure 2: using a 50% genome transfer per encounter.
Mean=1.6845614385965, standard deviation=0.11280099972487

stable state. The ts f = 0.90 variant converges (much) faster, but the
ts f = 0.50 variant performs better. This is confirmed by performing
a two-tailed Mann-Whitney test (p-value = .00078).

Changing the transfer rate makes it possible to operate a trade-
off between speed of convergence and exploitation of the initial

Figure 3: using a 90% genome transfer per encounter.
Mean=1.5773333272727, standard deviation=0.21354009301578

gene pool. As expected, a lower value (such as ts f = 0.50) leads
to slower convergence, but it also makes it possible to explore the
possible benefits of recombination between control parameters that
are originally spread over the population.

This short paper shows that the HIT-EE algorithm can be used
when the communication bandwidth is limited, by choosing a suit-
able amount of information to be transferred. Moreover, it reveals
that while hardware limitations may slow down convergence, it
can also benefit the quality of learning.

SUPPLEMENTARY INFORMATION
Sources and data for this paper are available1.

The initial reward value (iteration no.399) does not represent the effi-
ciency of the robots’ behaviour at this point but is due to an initial large
amount of available items to forage (once an item is harvested, there is a
delay of 50 iterations before relocation and reactivation).

Computing means, standard deviations, and p-values is performed using
runs that converged to behaviours with non-zero rewards. This is the case
for most of the runs presented here, but approx. 7% of the runs actually
converged to robots avoiding items and maximizing only the spread of
their own genome. For further discussion, we refer the reader to previous
papers in embodied evolution about the interplay between task-driven and
environment-driven selection pressures (see [1] for a review). P-values are
computed using the last 1200 iterations of each run.

The relatively large genome size is due to redundant and/or useless
sensory information fed to the controller (which is itself a simple Percep-
tron, with no hidden layer). Such a large input space is useful to avoid the
initialisation of a "lucky" candidate at generation 0.
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