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ABSTRACT

In the preference-based multi-objective optimization, the
lack of priori-knowledge makes it difficult for the decision
maker to specify an informed preference. Thus, the knees are
regarded as the naturally preferred solutions on the Pareto
optimal front. However, most research is based on a given
large number of solutions and a posteriori identifies the knee
candidates among them.

Based on the 𝛼-dominance relationship, this paper pro-
poses a new framework to a priori search the knee regions.
Firstly, a number of reference vectors are generated in the
objective space. During the environmental selection, all so-
lutions are associated to their closest reference vectors. The
solutions associated to different reference vectors are deemed
to be non-𝛼-dominated with each other. If they are correlated
with the same reference vector, the 𝛼-dominance relation-
ship is adopted to sort the solutions into different frontiers.
Therefore, the knee candidates are assigned to the first layer
and selected with a higher priority, so that more knee infor-
mation from the previous generation will be preserved and
more potential knee regions will be explored. The compara-
tive experiments demonstrate that the proposed method is
competitive in identifying convex knee regions.
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1 INTRODUCTION

Recently, increasing attention has been paid to the search
of knee points (regions) of multiobjective optimization prob-
lems (MOPs). Branke et al. [5] identify the knees with the
largest reflex angle. Deb and Gupta [6] propose a bend angle
to characterize the knees. Das et al. [4] identify the knees
with the maximum distance to a hyperplane constructed
by the extreme points of the population. Branke et al. [5]
characterize the knees with highest expected marginal utility
(EMU). Its extension [1] recursively uses the EMU to find
most-likely knee candidate in a knee region. The method [7]
uses the min-max utility to find the knee regions. Besides,
a niching-based method [8] is proposed to identify both the
concave and convex knee regions.

However, most of them are a posteriori and based on the
assumption given a set of well-distributed solutions approxi-
mating to the Pareto optimal front (PoF). Thus, this paper
proposes a new strategy to apply the 𝛼-dominance relation
in different objective spaces to sort the population so as to
get good knee candidates for the decision maker.

The rest paper is organized as follows. The proposed
method is introduced in Section 2. The experiments and
analysis are presented in Section 3. Section 4 concludes the
paper.

2 PROPOSED METHOD

The proposed algorithm is named by 𝛼-MOEA-KI1, following
the framework of NSGA-II [2]. The difference is to predefine
a set of reference vectors and the environmental selection.
The reference vectors are applied to partition the population
according to the perpendicular distance from the solutions
to their closet reference vectors. In the environmental selec-
tion, the 𝛼-dominance [3] based non-dominated sorting is
introduced to sort the population.

In the sorting, we only change the comparator of the
conventional Pareto dominance based non-dominated sorting.
Specifically, the 𝑓𝑖(

−→𝑥 ) ≺ 𝑓𝑖(
−→𝑦 ) is replaced with 𝑔𝑖(

−→𝑥 ,−→𝑦 ) <
0 ∧ 𝑊𝑥 == 𝑊𝑦, which means only the solutions in the
same subregion (𝑊𝑥 == 𝑊𝑦) are compared by means of the
𝛼−dominance relationship. With the same reason, 𝑓𝑖(

−→𝑦 ) ≺
𝑓𝑖(

−→𝑥 ) is replaced with 𝑔𝑖(
−→𝑥 ,−→𝑦 ) < 0∧𝑊𝑥 == 𝑊𝑦. If they are

from different subregions, then they are non-dominated. Thus,
after the comparison on 𝑚 objectives, if 𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = −1,

1https://github.com/LursonkjGuo/Code
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−→𝑥 ≺𝛼
−→𝑦 ; if 𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 1, −→𝑦 ≺𝛼

−→𝑥 ; otherwise, −→𝑥 �𝛼−→𝑦 .

3 EXPERIMENTS AND ANALYSIS

The problems, including DO2DK [5] with 𝐾 = 4, DEB2DK
[5] with 𝐾 = 5, CKP [8] with 𝐾 = 5, DEB3DK [5] with
𝐾 = 3 are chosen as the benchmarks, where 𝑠 = 1 and 𝑛 = 30
are set. In the comparative experiments, KneeDis [4] with
△ = 0.35, KneeWD [7] with 𝛿 = 0.2, KneeEMU [5] with △ =
0.8, KneeDEA [8] with diff = 0.001 are selected. 𝛼 = 0.75 is
set in the proposed method.

Figure 1: The first row plots the reference points
on PoFs. The rest rows are the results obtained by
𝛼-MOEA-KI, KneeWD, KneeDis, KneeEMU, and
KneeDEA, in sequence.

Fig. 1 visualizes the knee candidates obtained by the five
knee identification methods. The results indicate that 𝛼-
MOEA-KI is competitive in approximating to the true knee
points on all problems. Specifically, 𝛼-MOEA-KI, KneWD,
and KneeDEA have better performance on DO2DK problem

with asymmetric PoF. On DEB2DK problem with symmet-
rical PoF, 𝛼-MOEAKI and KneeWD can find all the knee
regions with good proximity. In dealing with the discontin-
uous CKP problem, 𝛼-MOEAKI and KneeDEA have the
best performance in searching the knee regions. 𝛼-MOEA-KI
offers the best performance with good candidates to the knee
regions of DEB3DK with discontinuous and complex PoF.

4 CONCLUSION

In a posteriori identification of knee points, a large well-
distributed solution set along the PoF is required, however it
is expensive to gain such a set of reference solutions. Based
on the 𝛼-dominance relationship, this paper proposed an
a priori algorithm to search the knee regions. It applies
the 𝛼-dominance to sort the possible knee candidates from
different sub-regions into the fronts with a higher priority
to be selected to next generation. Thus more information of
the possible knee regions will be preserved and more possible
knee regions are explored. The comparative experiments
demonstrate that the proposed method is competitive in
identifying knee regions. One future research is to investigate
the performance of the proposed method in dealing with high-
dimensional problems by means of self-adjusting trade-off
rates and reference vectors.
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