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ABSTRACT
Contextual policy search (CPS) is a class of multi-task reinforcement

learning algorithms that is particularly useful for robotic applica-

tions. A recent state-of-the-art method is Contextual Covariance

Matrix Adaptation Evolution Strategies (C-CMA-ES). It is based on

the standard black-box optimization algorithm CMA-ES. There are

two useful extensions of CMA-ES that wewill transfer to C-CMA-ES

and evaluate empirically: ACM-ES, which uses a comparison-based

surrogate model, and aCMA-ES, which uses an active update of

the covariance matrix. We will show that improvements with these

methods can be impressive in terms of sample-efficiency, although

this is not relevant any more for the robotic domain.

CCS CONCEPTS
• Computing methodologies→ Sequential decision making;

KEYWORDS
multi-task learning, policy search, black-box optimization

ACM Reference Format:
Alexander Fabisch. 2019. Empirical Evaluation of Contextual Policy Search

with a Comparison-based Surrogate Model and Active Covariance Matrix

Adaptation. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321935

1 INTRODUCTION AND STATE OF THE ART
Behaviors can be generated with reinforcement learning in robot-

ics [3, 6]. A standard approach is policy search with movement

primitives. Many episodic policy search algorithms are similar

to black-box optimization. We are interested in contextual policy

search: argmaxω
∫
s p (s )

∫
θ πω (θ |s )E [R (θ , s )]dθds, where s ∈ S

is a context, πω is a stochastic upper-level policy parameterized

by ω that defines a distribution of policy parameters for a given

context [3]. The return R is extended to take into account the

context, i.e., the context modifies the objective. During the learn-

ing process, we optimize ω, observe the current context s , and
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select θ i ∼ πω (θ |s ). The deterministic problem formulation is:

argminω
∫
s fs (дω (s ))ds, where fs is a parameterized objective

and we want to find an optimal function дω from a parameterized

class of functions. We call this contextual black-box optimization.

Ideas from black-box optimization and policy search have been

transerred to contextual problems. Relative entropy policy search

[REPS, 13] was extended to C-REPS [10] although C-REPS is usually

not robust against selection of its hyperparameters [5] and suffers

from premature convergence [2]. Bayesian optimization has been

extended to BO-CPS [12] and CMA-ES [8] to C-CMA-ES [1]. There

are also extensions that tackle problems that are not relevant for

standard black-box optimization, e.g., Contextual REPS has been

extended to support active context selection [4]. In this work, we

will build on one of the most promising algorithm: C-CMA-ES. It

is more computationally efficient than BO-CPS and has only a few

hyperparameters with good default values. Figure 1 illustrates how

C-CMA-ES compares to C-REPS in a contextual optimization.

2 AC-ACM-ES
C-CMA-ES [1] is based on CMA-ES [8]. We transfer two exten-

sions of CMA-ES to C-CMA-ES: active CMA-ES [9] and ACM-ES

[11], which uses a surrogate model. We empirically tested hyperpa-

rameters of C-ACM-ES. We have two configurations: standard and

aggressive exploitation of the surrogate model. We set the number

of samples the surrogate after the model is accurate enough to be

used to nstar t = 3000 or nstar t = 100. The number of samples

tested with the surrogate model is set to λ′ = 3λ and λ′ = 10λ
respectively. The polulation size is λ = 50. Larger values for niter ,
the number of iterations to train the surrogate model, improve

the result. As a compromise between computational overhead and

sample-efficiency, we select niter = 1000. cpow is a parameter of

the ranking SVM objective. Although in the original ACM-ES [11]

the default value is 2, cpow = 1 works better for C-ACM-ES.

3 EVALUATION
3.1 Contextual Black-box Optimization
This analysis is similar to the one of Abdolmaleki et al. [1] with addi-

tional objective functions.Wewill maximize−fs . Wemake standard

benchmark functions contextual by defining fs (θ ) = f (θ +Gs ),
where components of the matrixG are sampled iid fromN (0, 1). In
our case θ ∈ R20 and s ∈ Rns with ns = 1 if not stated otherwise.

Components of s are sampled from [1, 2). To make results compara-

ble to the one of Abdolmaleki et al. [1], we use the same sphere and

Rosenbrock functions. In addition, we use the Ackley function and

ellipsoidal, discus, and different powers from the COCO platform

[7]. We compared several extensions of C-CMA-ES (see Table 1).
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Table 1: Comparison of CPS methods, average objective of 20 runs. Best results are underlined.

Objective Sphere Rosenbrock Ackley Ellipsoidal Diff. Powers Discus

ns 2 1 1 1 1 1

Test after generation 200 850 1100 800 600 850

Method Average objective function value over contexts:
1

|S |
∑
s∈S fs (x )

C-REPS −4.509 · 10+01 −1.255 · 10+04 −1.947 · 10+01 −2.944 · 10+05 −9.088 · 10+02 −1.288 · 10+02

C-CMA-ES −1.815 · 10−05 −2.328 · 10−03 −8.762 · 10−07 −2.337 · 10+02 −1.562 · 10−07 −2.995 · 10−10

aC-CMA-ES −1.348 · 10−05 −9.736 · 10−01 −8.773 · 10−07 −1.524 · 10+02 −3.038 · 10−07 −3.838 · 10−10

C-ACM-ES+ −1.294 · 10−08 −1.445 · 10+15 NaN −1.300 · 10+16 −7.111 · 10+74 −8.297 · 10+27

aC-ACM-ES+ −1.506 · 10−01 −3.227 · 10+19 NaN −2.407 · 10+18 −8.717 · 10+82 −1.250 · 10+24

C-ACM-ES −6.257 · 10−04 −3.656 · 10−09 −3.995 · 10−09 −1.039 · 10−10 −2.464 · 10−14 −8.877 · 10−12

aC-ACM-ES −2.309 · 10−04 −3.899 · 10−11 −1.813 · 10−08 −2.388 · 10−11 −1.284 · 10−14 −1.684 · 10−11

Figure 1: C-REPS vs. C-CMA-ES in a simple contextual func-
tion optimization. Values of the contextual objective are
shown by background color. The optimum is a quadratic
function. The x-axis represents context s and the y-axis the
parameter x . The search distribution (mean indicated by
sold line) is updated with 100 samples from the objective.

Figure 2: Learning curves for Discus function. Mean and
standard deviation of 20 experiments are displayed for the
first few generations.

NaN indicates divergence. We use C-REPS with the hyperparameter

ϵ = 1 and C-CMA-ES as baselines. The term aC-CMA-ES refers

to active C-CMA-ES, C-ACM-ES uses the surrogate model, and

aC-ACM-ES combines both. “+” indicates aggressive exploitation

of the surrogate model. Variants of C-ACM-ES outperform vanilla

C-CMA-ES. Although the surrogate model focuses on ordering the

samples with the highest rank more correctly and aC-CMA-ES is

often not better than C-CMA-ES, aC-ACM-ES performs best in most

cases. Otherwise C-ACM-ES is better. On the sphere function, how-

ever, it is important to exploit the surrogate model as aggressively

as possible to be better than C-CMA-ES. An interesting result is

that C-REPS is often much faster in the early phase (see Figure 2).

In the first 10 generations (500 evaluations) C-REPS outperforms

all algorithms by orders of magnitude. This phase is interesting for

learning in the real world. Although we see that C-REPS converges

too early and variants of C-CMA-ES will continue making progress.

3.2 Conclusion
We demonstrated that the extensions active C-CMA-ES and C-ACM-

ES can be combined and yield impressive results on contextual

function optimization problems in comparison to C-CMA-ES. We

have shown, however, that these results are actually not directly

transferable to the domain of robotics, where we would like to learn

successful upper-level policies in 100–1000 episodes at maximum.
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