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ABSTRACT

Kriging assisted reference vector guided evolutionary algorithm (K-
RVEA) is a recently proposed algorithm to deal with many-objective
optimization problems involving computationally expensive objec-
tive functions. It employs Kriging as the a surrogate and identifies
multiple infill locations based on angle penalized distance (APD)
metric guided by a set of reference vectors originating from the ideal
point. In this paper we investigate the performance implications
of the underlying schemes, in particular (a) is APD based selection
necessary since it involves an additional parameter, (b) can the full
archive be used for surrogate training as opposed to fixed archive
size in K-RVEA (c) can the infill solutions be further improved
through angle constrained local search and finally (d) understand
the limitations of single set of reference vectors and investigate the
benefits of dual set of reference vectors (one originating from the
ideal and the other from the Nadir). These investigations are based
on the suite of standard and inverted DTLZ and WFG problems
with up to 10 objectives.
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1 INTRODUCTION

Multi-objective optimization problems (MOPs) are commonly en-
countered in practical applications. In the last decade or so, there
has been a significant interest in solving MOPs with more than 3
objectives, which have colloquially come to be known as many-
objective optimization problems (MaOPs). When the underlying
objective functions are computationally expensive, evolutionary
algorithms cannot be applied to solve them in their standard form.
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The recently proposed K-RVEA [1] employs Kriging based surro-
gates to approximate the objective functions and the models are
periodically trained using a prescribed number of training samples
obtained through true evaluations. The method is built upon a de-
composition based framework where search is conducted along a
set of systematically sampled reference vectors (RVs) originating
from the ideal point. Solutions are assigned to its closest RV (close-
ness in terms smallest acute angle) and the best solution along each
RV based on angle penalized distance (APD) is carried forward as
a member of the parent population for the next generation. The
motivation of this study is to understand the performance implica-
tions of the key strategies used within K-RVEA, and in particular
examine:

(1) Selection metric: The APD involves a parameter « in the
penalty function to control the balance between convergence
and diversity across generations. Can similar/better perfor-
mance be achieved using a simpler parameter-less metric
such as Euclidean distance (ED) from the ideal point?
Infill solutions: In K-RVEA, solutions are generated using
recombination and a subset of them eventually are selected as
infill solutions which undergo actual evaluation. However,
there is an opportunity to conduct an angle constrained
local search on the surrogate model to further improve their
quality before evaluation.

Surrogate training: In K-RVEA, surrogates are periodically
trained with a finite and fixed size of training samples. Since
we are within the realm of limited number of function eval-
uations, can we derive benefits by using the complete un-
bounded archive for training and train models in every gen-
eration as opposed to periodic training as done in K-RVEA.
Such an approach would eliminate two user defined param-
eters, i.e., the periodicity of training and maximum size of
the training set.

Reference vector set: K-RVEA uses a set of RVs originating
from the estimated ideal point. Can we improve the perfor-
mance using a dual set of RVs, i.e., one originating from
the ideal and the other from the worst point of the current
population.

The following variants have been created to test the above.

Table 1: Different K-RVEA Variants.

Variant Description

K-RVEA The original K-RVEA

K-RVEAgp | Uses ED as the selection metric instead of APD
K-RVEAfpa | Uses full archive for training instead of fixed size
K-RVEA1s | Uses angle constrained surrogate assisted local search
K-RVEApR | Uses dual set of RVs instead of conventional single set
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2 NUMERICAL EXPERIMENTS

The performance is assessed using the standard DTLZ [2] and
WFG [3] problems and their inverted versions as proposed in [4]
with 3, 4, 6, 8 and 10 objectives. The number of variables for all
DTLZ problems is set to 10 and for WFG problems, the numbers
of variables are set as 10, 10, 9, 9 and 11 for 3, 4, 6, 8 and 10 objec-
tive problems. Inverted Generational Distance (IGD) is used as the
benchmarking metric. The reference sets for IGD calculation are
obtained from the PlatEMO framework [5] for the DTLZ and WFG
problems. For the minus variants, the reference sets are derived
as suggested in [4]. The spacings in different layers of the RVs,
i.e., Hy and H; values for different objectives and the numbers of
points in the sets are kept the same as proposed in [1]. Wilcoxon
Rank-sum (WRS) test with a 5% confidence level is used to assess
the statistical significance of the results. The overall performance is
also visually presented using performance profile plots based on the
median IGD values (out of 25 independent runs) for all problems in
all objectives.

The overall performance of each strategy can be visualized from
the performance profile plots presented in Fig. 1. For the standard
problems (Fig. 1(a)), the best performing strategy is K-RVEA] g
which delivers better median IGD values in ~#63% of the problem
instances followed by K-RVEAgp with better median values in
~58%, K-RVEApp with better median values in =53% and finally, K-
RVEApR with better median values in ~24% problem instances. For
the minus problems (Fig. 1(b)), K-RVEApR is the best performing
strategy with better median values in ~68% problem instances,
while K-RVEAga has better median values in ~65%, K-RVEA[g
with better median values in ~62% and K-RVEAgp with better
median values in ~50% problem instances.

Based on WRS test results on both standard and minus problems
K-RVEA performs worse than K-RVEAgp (13 wins and 27 losses in
normal problems; 26 wins and 29 losses in minus problems). Clearly,
use of simple ED as opposed to APD also eliminates the need for
user defined parameters a and 6.

One can also observe that for both standard and minus problems
, the performance of original K-RVEA is worse than K-RVEAgp4 (12
wins and 32 losses in normal problems; 21 wins and 39 losses in mi-
nus problems). Although using the full archive information would
mean increase in model training time, it can offer significant bene-
fits in terms of quality of final solutions.

Once again for both normal and minus problems, one can observe
poor performance of original K-RVEA when compared with K-
RVEA[s (20 wins and 30 losses for normal problems and 22 wins
and 40 losses for minus problems). Clearly, improving the infill
solutions though surrogate assisted angle constrained local search
is beneficial although it incurs additional cost of local search.

Performance with dual set of RVs is particularly interesting. For
normal problems, according to the WRS test, the original K-RVEA
outperforms K-RVEApR (55 wins and 16 losses). On the other hand
for minus problems, performance of original K-RVEA is relatively
poor (21 wins and 44 losses).

3 CONCLUSIONS AND FUTURE DIRECTIONS

The observations clearly reveal a number of areas which need care-
ful consideration. The first relates to the selection metric APD. One
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Table 2: Test results with the IGD metric based on 25 runs
across standard DTLZ and WFG problems over different
numbers of objectives.

Problem Types M K-RVEAgp K-RVEAps K-RVEAjs K-RVEApr

(n/w/l/t) (n/w/l/t) (n/w/l/t) (n/w/l/t)

3 16/6/4/6 16/3/7/6 16/0/14/2 16/11/1/4

4 16/3/5/8 16/3/5/8 16/4/4/8 16/8/6/2

Standard 6 16/1/3/6 16/1/6/9 16/8/3/5 16/11/4/1
Problems 8 16/2/8/6 16/4/8/4 16/5/5/6 16/12/2/2
10 16/1/7/8 16/1/6/9 16/3/4/9 16/13/3/0

Total = 80/13/27/40 80/12/32/36 80/20/30/30 80/55/16/9

3 13/5/8/0 13/5/8/0 13/5/8/0 13/5/8/0

4 13/5/8/0 13/5/8/0 13/5/8/0 13/5/8/0

Minus 6 13/4/6/3 13/3/9/1 13/4/9/0 13/3/10/0
Problems 8 13/7/3/3 13/4/5/4 13/4/6/3 13/4/9/0
10 13/5/4/4 13/4/9/4 13/4/9/0 13/4/9/0

Total = 65/26/29/10 65/21/39/5  65/22/40/3  65/21/44/0

0.8

——K-RVEA ——K-RVEA

0.6 ——KRVEAL, 0.6 —KRVEAg,
{,m —K-RVEA_, {,m —K-RVEA_,
T 04 ——KRVEA 5 T 04 ——KRVEA 4
—K-RVEA ——K-RVEA
0.2 0.2
0 0
5 678 1 15 2 25 3 35 4

Figure 1: Performance profile plots considering the median
IGD values of 25 independent runs (a) standard problems (b)
minus problems.

can use several scalarizing functions and although they generate
different preference structures, such a choice is less likely to in-
fluence the performance since members of a subpopulation are
only compared among each other. A parameter free metric such
as Euclidean distance may be equally effective. Secondly, using a
local search to improve infill solutions, as well as building surrogate
models with all available information (in the archive) is certainly
beneficial. Finally, while use of a dual set of reference vectors with
the choice guided by the energy metric in K-RVEApp is far from
perfect, generic adaptation is inherently going to be challenging.
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