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ABSTRACT
This paper surveys and compares a wide range of derivative-free
optimization algorithms in an open source context. We also propose
a genetic variant of differential evolution, an adaptation of popu-
lation control for the multimodal noise-free case, new multiscale
deceptive functions, and as a contribution to the debate on genetic
crossovers, a test function with useless variables on which 2-points
crossover achieves great performance. We include discrete and con-
tinuous and mixed settings; sequential and parallel optimization;
rotated, separable and partially rotated settings; noisy and noise-
free setting. We include real world applications and compare with
recent optimizers which have not yet been extensively compared
to the state of the art.
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We propose a platform for derivative-free optimization, filling a
gap in the existing open source offer. We also provide an extensive
comparison of algorithms, including algorithms which have not
yet been extensively compared to the state of the art [2, 5, 10]
and machine learning applications. We consider corruption of the
objective function by noise, with variance not vanishing at the
optimum and with a distinction between recommendation and
exploration. We document the impact of the number of workers
in parallel settings. We consider corruption by critical variables
and/or modularity properties. We include uni/multimodal cases and
ill-conditioning. Experiments can be reproduced using [20] (version
0.1.3). The command lines for reproducing our experiments are the
followings for ill-conditioned optimization (resp. for the discrete
setting and for our multiscale deceptive functions):
python -m nevergrad.benchmark illcondi –plot –num_workers 20
(or discrete, or deceptive, instead of illcondi)

Our benchmark includes the following families of optimization
algorithms. One-shot optimization methods, which use a num-
ber of computation units equal to the budget - all candidates
are evaluated simultaneously: random, Halton & Hammersley
search [8, 9], latin hypercube sampling [14], and variants. Some
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Figure 1: Comparison between various optimizers on the
F2F5 model. Parallelism: 30 models are trained at any given
time, the budget takes into account the parallelism.

Figure 2: Comparison of various optimizers on the AIR
model. Parallelism: 5models are under training at any given
time, the budget takes into account the parallelism. Variants
of DE all clearly outperform random search.

Figure 3: Parallel (84 workers) optimization of flags for JIT
compilation as in Tensor Comprehension. DE variants per-
form well as in many of our real-world experiments.

evolution strategies [21] are evaluated as well: the simple (1 + 1)-
algorithm implicitly parallelized by the ask/ tell/recommend in-
terface discussed below, Covariance Matrix Adaptation, and other
non-elitist (µ, λ)-methods. We include tools from mathematical
programming, namely Cobyla [19], Particle Swarm Optimization
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(PSO [13, 24]), bandit methods [3], Powell [18] as modified in Py-
Opt [17], Sequential Quadratic Programming (SQP [1]), Nelder-
Mead [16]. We also include Bayesian optimization [12, 22], neural
optimization as in [2] (termedNAS due to the origin in Neural Archi-
tecture Search - can be used as a standalone generic derivative-free
optimization algorithm), and Differential Evolution (DE) in various
flavors [23] including rotationally invariant (RotInv) or almost in-
variant versions [15], LHS initialization (LhsDE) and a novel use
of k-point [11] crossover (CO) in lieu of the classical pointwise
crossover of DE. For noise-management, we include variants of
algorithms above based on repeated evaluations, and a method
termed “TBPSA” (test-based population-size adaptation), based on
population control (PC [10]). We also use NaiveTBPSA, which uses
the individual which got the best fitness so far (BSF) as a recom-
mendation (i.e. an approximation of the optimum) rather than the
center of current Gaussian (which is traditional for PC).

Conclusion. We open source a library of test beds and derivative-
free optimization algorithms. Artificial experiments can be repro-
duced by a single command. Contrarily to parallel, noisy and ro-
bust cases for which we get clear results, we note that the case
of ill-conditioned unimodal functions appears quite complicated,
depending on many factors. Results are clearly different for Cigar
and for Ellipsoid. They also depend on parallelism and rotation. Co-
variance Matrix Adaptation (CMA) nonetheless looks like a stable
tool when dimensionality is tractable. The computational cost of
CMA increases much more than PSO (Particle SwarmOptimization)
or DE when the dimension increases. CMA is not, contrarily to PSO
and DE, invariant by addition of unimportant variables. RotInvDE
and AlmostRotInvDE perform excellently when the parallelism ex-
ceeds the dimension [15].For real world hyperparameter search, DE
significantly outperforms RS in a wide range of dimensions (from
2 to 26), including high parallelism with just 3 or 4 generations. It
also outperformed PSO and CMA in Fig. 1. Consistently with [15],
DE with almost rotational invariance (i.e. CR = 0.9) performs bet-
ter than other DE when the test is fully rotated. Nonetheless, it
performed poorly in some real-world tasks. DE was surprisingly
robust for the tuning of machine learning tasks on real data. The
versions of DE with genetic CO were good as well, without clear
improvement compared to variable-wise CO in some cases, but also
with huge improvement in some clear simple illustrative test func-
tions, compared to many state-of-the-art optimization methods:
this is an element in the long standing debate on the effectiveness
of genetic operators [6, 7, 11]. We provide new deceptive functions,
illustrating the robustness of PSO. These functions are complemen-
tary to the known jump function and the functions with critical
variables discussed in Rapin and Teytaud [20]. We got excellent
results for mathematical programming techniques (gradient free)
in the case of very smooth functions such as the Cigar function.
Neural optimization [2] is compared to classical existing algorithms
and to PC methods from [10] in noisy, multimodal and simple cases.
High dimension is hard for neural optimization. PC is excellent for
noise in continuous domains. Neural optimization can be competi-
tive for noisy optimization and/or hard multimodal optimization
when dimension is moderate and budget is large - and there might
be a significant headroom for these recent methods. Population
control [10] works quite well in noise-free multimodal optimization
- when using the BSF recommendation policy. In the discrete world,

we confirm good results of FastGA [5] and of the uniform mixing
of mutation rates [4].
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