
Openly Revisiting Derivative-Free Optimization
Jeremy Rapin

Facebook AI Research
Pauline Dorval

Facebook AI Research
Jules Pondard

Facebook AI Research
Nicolas Vasilache
Facebook AI Research

Marie-Liesse Cauwet
Mines de Saint-Etienne

Camille Couprie
Facebook AI Research

Olivier Teytaud
Facebook AI Research

ABSTRACT
This paper surveys and compares a wide range of derivative-free
optimization algorithms in an open source context. We also propose
a genetic variant of differential evolution, an adaptation of popu-
lation control for the multimodal noise-free case, new multiscale
deceptive functions, and as a contribution to the debate on genetic
crossovers, a test function with useless variables on which 2-points
crossover achieves great performance. We include discrete and con-
tinuous and mixed settings; sequential and parallel optimization;
rotated, separable and partially rotated settings; noisy and noise-
free setting. We include real world applications and compare with
recent optimizers which have not yet been extensively compared
to the state of the art.
ACM Reference format:
Jeremy Rapin, Pauline Dorval, Jules Pondard, Nicolas Vasilache, Marie-
Liesse Cauwet, Camille Couprie, and Olivier Teytaud. 2019. Openly Revisit-
ing Derivative-Free Optimization. In Proceedings of Genetic and Evolutionary
Computation Conference Companion, Prague, Czech Republic, July 13–17, 2019
(GECCO ’19 Companion), 2 pages.
https://doi.org/10.1145/3319619.3321966

We propose a platform for derivative-free optimization, filling a
gap in the existing open source offer. We also provide an extensive
comparison of algorithms, including algorithms which have not
yet been extensively compared to the state of the art [2, 5, 10]
and machine learning applications. We consider corruption of the
objective function by noise, with variance not vanishing at the
optimum and with a distinction between recommendation and
exploration. We document the impact of the number of workers
in parallel settings. We consider corruption by critical variables
and/or modularity properties. We include uni/multimodal cases and
ill-conditioning. Experiments can be reproduced using [20] (version
0.1.3). The command lines for reproducing our experiments are the
followings for ill-conditioned optimization (resp. for the discrete
setting and for our multiscale deceptive functions):
python -m nevergrad.benchmark illcondi –plot –num_workers 20
(or discrete, or deceptive, instead of illcondi)

Our benchmark includes the following families of optimization
algorithms. One-shot optimization methods, which use a num-
ber of computation units equal to the budget - all candidates
are evaluated simultaneously: random, Halton & Hammersley
search [8, 9], latin hypercube sampling [14], and variants. Some

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321966

Figure 1: Comparison between various optimizers on the
F2F5 model. Parallelism: 30 models are trained at any given
time, the budget takes into account the parallelism.

Figure 2: Comparison of various optimizers on the AIR
model. Parallelism: 5models are under training at any given
time, the budget takes into account the parallelism. Variants
of DE all clearly outperform random search.

Figure 3: Parallel (84 workers) optimization of flags for JIT
compilation as in Tensor Comprehension. DE variants per-
form well as in many of our real-world experiments.

evolution strategies [21] are evaluated as well: the simple (1 + 1)-
algorithm implicitly parallelized by the ask/ tell/recommend in-
terface discussed below, Covariance Matrix Adaptation, and other
non-elitist (µ, λ)-methods. We include tools from mathematical
programming, namely Cobyla [19], Particle Swarm Optimization

267

https://doi.org/10.1145/3319619.3321966
https://doi.org/10.1145/3319619.3321966

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic D. Blind et al.

(PSO [13, 24]), bandit methods [3], Powell [18] as modified in Py-
Opt [17], Sequential Quadratic Programming (SQP [1]), Nelder-
Mead [16]. We also include Bayesian optimization [12, 22], neural
optimization as in [2] (termedNAS due to the origin in Neural Archi-
tecture Search - can be used as a standalone generic derivative-free
optimization algorithm), and Differential Evolution (DE) in various
flavors [23] including rotationally invariant (RotInv) or almost in-
variant versions [15], LHS initialization (LhsDE) and a novel use
of k-point [11] crossover (CO) in lieu of the classical pointwise
crossover of DE. For noise-management, we include variants of
algorithms above based on repeated evaluations, and a method
termed “TBPSA” (test-based population-size adaptation), based on
population control (PC [10]). We also use NaiveTBPSA, which uses
the individual which got the best fitness so far (BSF) as a recom-
mendation (i.e. an approximation of the optimum) rather than the
center of current Gaussian (which is traditional for PC).

Conclusion. We open source a library of test beds and derivative-
free optimization algorithms. Artificial experiments can be repro-
duced by a single command. Contrarily to parallel, noisy and ro-
bust cases for which we get clear results, we note that the case
of ill-conditioned unimodal functions appears quite complicated,
depending on many factors. Results are clearly different for Cigar
and for Ellipsoid. They also depend on parallelism and rotation. Co-
variance Matrix Adaptation (CMA) nonetheless looks like a stable
tool when dimensionality is tractable. The computational cost of
CMA increases much more than PSO (Particle SwarmOptimization)
or DE when the dimension increases. CMA is not, contrarily to PSO
and DE, invariant by addition of unimportant variables. RotInvDE
and AlmostRotInvDE perform excellently when the parallelism ex-
ceeds the dimension [15].For real world hyperparameter search, DE
significantly outperforms RS in a wide range of dimensions (from
2 to 26), including high parallelism with just 3 or 4 generations. It
also outperformed PSO and CMA in Fig. 1. Consistently with [15],
DE with almost rotational invariance (i.e. CR = 0.9) performs bet-
ter than other DE when the test is fully rotated. Nonetheless, it
performed poorly in some real-world tasks. DE was surprisingly
robust for the tuning of machine learning tasks on real data. The
versions of DE with genetic CO were good as well, without clear
improvement compared to variable-wise CO in some cases, but also
with huge improvement in some clear simple illustrative test func-
tions, compared to many state-of-the-art optimization methods:
this is an element in the long standing debate on the effectiveness
of genetic operators [6, 7, 11]. We provide new deceptive functions,
illustrating the robustness of PSO. These functions are complemen-
tary to the known jump function and the functions with critical
variables discussed in Rapin and Teytaud [20]. We got excellent
results for mathematical programming techniques (gradient free)
in the case of very smooth functions such as the Cigar function.
Neural optimization [2] is compared to classical existing algorithms
and to PC methods from [10] in noisy, multimodal and simple cases.
High dimension is hard for neural optimization. PC is excellent for
noise in continuous domains. Neural optimization can be competi-
tive for noisy optimization and/or hard multimodal optimization
when dimension is moderate and budget is large - and there might
be a significant headroom for these recent methods. Population
control [10] works quite well in noise-free multimodal optimization
- when using the BSF recommendation policy. In the discrete world,

we confirm good results of FastGA [5] and of the uniform mixing
of mutation rates [4].

REFERENCES
[1] SME Artelys. 2015. (2015). https://www.artelys.com/news/159/16/

KNITRO-wins-the-GECCO-2015-Black-Box-Optimization-Competition
[2] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. 2017. Neural Op-

timizer Search with Reinforcement Learning. In Proc. of the 34th International
Conference on Machine Learning (ICML’17), Vol. 70. 459–468.

[3] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. 2011. Pure exploration in
finitely-armed and continuous-armed bandits. Theor. Comput. Sci. 412, 19 (2011),
1832–1852.

[4] Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of Mutation
Rates in Non-elitist Populations. In Parallel Problem Solving from Nature - PPSN
XIV - 14th International Conference, Edinburgh, UK, September 17-21, 2016,
Proceedings. 803–813.

[5] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.
Fast Genetic Algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’17). ACM, New York, NY, USA, 777–784.

[6] Carola Doerr and Eduardo Carvalho Pinto. 2018. A Simple
Proof for the Usefulness of Crossover in Black-Box Optimiza-
tion. In PPSN 2018: Parallel Problem Solving from Nature – PPSN XV
(Lecture Notes in Computer Science), Vol. 11102. Springer, Coimbra, Por-
tugal, 29–41.

[7] David B. Fogel and Lauren C. Stayton. 1994. On the effectiveness of crossover in
simulated evolutionary optimization. Biosystems 32, 3 (1994), 171 – 182.

[8] J.H. Halton. 1960. On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals. Numer. Math. 2 (1960), 84–90.

[9] J. M. Hammersley. 1960. Monte-Carlo Methods For SolvingMultivariate Problems.
Annals of the New York Academy of Sciences 86, 3 (1960), 844–874.

[10] Michael Hellwig and Hans-Georg Beyer. 2016. Evolution Under Strong Noise:
A Self-Adaptive Evolution Strategy Can Reach the Lower Performance Bound
- The pcCMSA-ES. In Parallel Problem Solving from Nature – PPSN XIV, Julia
Handl, Emma Hart, Peter R. Lewis, Manuel López-Ibáñez, Gabriela Ochoa, and
Ben Paechter (Eds.). Springer International Publishing, Cham, 26–36.

[11] John H. Holland. 1973. Genetic Algorithms and the Optimal Allocation of Trials.
SIAM J. Comput. 2, 2 (1973), 88–105.

[12] Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998. Efficient Global
Optimization of Expensive Black-Box Functions. Journal of Global Optimization
13, 4 (01 Dec 1998), 455–492.

[13] James Kennedy and Russell C. Eberhart. 1995. Particle swarm optimization. In
Proceedings of the IEEE International Conference on Neural Networks. 1942–
1948.

[14] M. D. McKay, R. J. Beckman, and W. J. Conover. 1979. A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code. Technometrics 21, 2 (1979), 239–245.

[15] J. Montgomery and S. Chen. 2010. An analysis of the operation of differential
evolution at high and low crossover rates. In IEEE Congress on Evolutionary
Computation. 1–8.

[16] John A. Nelder and Roger Mead. 1965. A simplex method for function minimiza-
tion. Computer Journal 7 (1965), 308–313.

[17] Ruben E. Perez, Peter W. Jansen, and Joaquim R. R. A. Martins. 2012. pyOpt: A
Python-Based Object-Oriented Framework for Nonlinear Constrained Optimiza-
tion. Structures and Multidisciplinary Optimization 45, 1 (2012), 101–118.

[18] M. J. D. Powell. 1964. An efficient method for finding theminimum of a function of
several variables without calculating derivatives. Comput. J. 7, 2 (1964), 155–162.

[19] M. J. D. Powell. 1994. A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation. Springer Nether-
lands, Dordrecht, 51–67.

[20] J. Rapin and O. Teytaud. 2018. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad. (2018).

[21] I. Rechenberg. 1973. Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian Op-
timization of Machine Learning Algorithms. In Advances in Neural Information
Processing Systems 25 (NIPS’12). 2951–2959.

[23] Rainer Storn and Kenneth Price. 1997. Differential Evolution: A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces. J. of Global
Optimization 11, 4 (Dec. 1997), 341–359.

[24] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas. 2013. Standard Particle Swarm
Optimisation 2011 at CEC-2013: A baseline for future PSO improvements. In 2013
IEEE Congress on Evolutionary Computation. 2337–2344.

268

https://www.artelys.com/news/159/16/KNITRO-wins-the-GECCO-2015-Black-Box-Optimization-Competition
https://www.artelys.com/news/159/16/KNITRO-wins-the-GECCO-2015-Black-Box-Optimization-Competition
https://GitHub.com/FacebookResearch/Nevergrad

	Abstract
	References

