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ABSTRACT 
We aim to showcase the benefit of transfer optimization for 
route planning problems by illustrating how the solution 
accuracy of travelling salesman problem instances can be 
enhanced via autonomous and positive transfer of knowledge 
from related source problems that have been encountered 
previously. Our approach is able to achieve better solution 
accuracy by exploiting useful past experiences at runtime, based 
on a source-target similarity measure learned online.  1 

CCS CONCEPTS 
Computing methodologies → Mixture models  

KEYWORDS 
transfer optimization, evolutionary algorithms, route planning  

ACM Reference format: 

Ray Lim, Yew-Soon Ong, Hanh Thi Hong Phan, Abhishek Gupta, and 
Allan Nengsheng Zhang. 2019. Can Route Planning be Smarter with 
Transfer Optimization? In GECCO ’19 Companion, ACM GECCO 
conference, Prague, Czech Republic, July 2019 (GECCO’19), 2 pages. 
https://doi.org/10.1145/3319619.3321947 

1 INTRODUCTION 
Transfer optimization [1] is an emerging research topic that 
offers a new perspective to leverage on potentially useful 
knowledge from past problem-solving experiences. Recent 
studies [1, 2] have shown that knowledge transfer from related 
problems can enhance evolutionary optimization performance, 
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but the focus is mainly on continuous optimization problems. 
Moreover, since practitioners usually do not have prior 
knowledge about the relationship between previously optimized 
source problems and the current target problem of interest, one 
of the most challenging issues is then to reduce the threat of 
negative transfer (which may arise from transferring knowledge 
in a random fashion). Motivated by these circumstances, here we 
explore the possibility of enhancing the solution accuracy of 
route planning (i.e. combinatorial optimization) problems by 
autonomous and positive transfer of knowledge from related 
source problems. We consider travelling salesman problem (TSP) 
instances in this paper. 

2 OUR APPROACH 
Our approach assumes that a knowledge base containing high 
quality information from previously encountered source 
combinatorial problems is available. Such information represents 
the knowledge extracted and stored as edge histogram models 
[3] p1(x), …, pK-1(x) (i.e. discrete source probabilistic models). 
Relevant knowledge can be transferred from the source models 
at runtime to enhance the search performance when solving a 
new target optimization problem. Positive transfer of knowledge 
is achieved by using an optimal configuration of source models 
and the target model p’K(x) to build an optimal target mixture 
model pK(x), which is mathematically expressed as follows: 

 
pK(x) = ∑ 𝑤𝐾−1

𝑘=1 k⋅pk(x) + wK⋅p’K(x),                  (1) 
 
where w1, …, wK-1 are the optimal source-target similarity values, 
wK  is the mixture coefficient of the original target model, and 
∑ 𝑤𝐾
𝑘=1 k = 1. 

The optimal value of wk’s is the learned source-target 
similarity measure which automatically determines the extent of 
knowledge transfer from each source model. To learn the 
optimal configuration of wk’s, a mathematical program in terms 
of a log-likelihood function must be solved as follows [2]: 

 
Maximize   log L = ∑ log𝑁

𝑖=1  ∑ 𝑤𝐾
𝑘=1 k φk(xi),                 (2) 
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where N is the target population size, and φk(xi) is the (i,k)th 
entry of an N x K matrix representing the likelihood of the kth 
model on the ith individual in the target population. 

We name this approach as the probabilistic model-based 
transfer evolutionary algorithm (PMTEA). PMTEA consists of 
two components: (i) a standard genetic algorithm (GA), and (ii) a 
probabilistic model-based sequential transfer procedure that is 
activated periodically according to a transfer interval parameter. 
The required inputs of PMTEA are a new target optimization 
problem with objective function fK, a knowledge base containing 
source probabilistic models and a transfer interval ∆. The 
algorithm begins by randomly generating an initial population of 
solutions encoded in permutation representation. All individuals 
are evaluated using fK, and domain generalization is performed 
on all source models to match the dimensionality of the target 
problem. While mod (t, ∆) ≠ 0, a standard GA runs by applying 
crossover and/or mutation operators on the selected parent 
population to create the offspring population. 

When mod (t, ∆) = 0, the sequential transfer procedure is 
activated and the pK(x) is built by learning the optimal wk’s 
online according to (1) and (2) respectively. In contrast to the 
standard GA, the offspring population is generated by sampling 
solutions from pK(x), hence facilitates positive transfer of 
relevant knowledge from the source problems. Subsequently, the 
new population for the next generation is selected based on 
elitist selection. The entire evolutionary process is repeated until 
specified stopping condition(s) are met. 

3 EXPERIMENTS  
We use TSP instances from [5] as target problems. The source 
problems are generated from the respective target problem by 
randomly removing a number of nodes. All source problems are 
pre-optimized using standard GA, and the source models are 
built using the final population containing the optimum solution. 
The transfer interval is set to ∆=5 for PMTEA. The stopping 
condition is set to 500 consecutive generations without change 
in the population’s best fitness. For all GA search, the crossover 
rate is set to pc = 0.5 and the mutation rate is set to pm = 0.2, 
while edge recombination crossover and displacement mutation 
operators are used. All population sizes are set to N = 300.  

We compare PMTEA to a no-transfer variant of PMTEA (NT-
PMTEA) as well as to conventional EAs without knowledge 
transfer, such as the standard GA [4] and the edge histogram-
based sampling algorithm (EHBSA) [3]. Table 1 shows the mean 
and standard deviation values achieved by all considered 
algorithms over 30 independent runs. We can see that PMTEA 
consistently achieved better solution accuracy than the other 
algorithms. We attribute this observation to the positive transfer 
of knowledge that PMTEA enables by controlling the extent of 
knowledge transfer based on a source-target similarity measure 
0 ≤ wk ≤ 1 learned online. In Fig. 1, we illustrate the similarity 
measure learning trends in PMTEA for the case of TSP100. We 
can deduce that the higher values of wk learned in the early stage 
of evolutionary search has enabled positive knowledge transfer 
from TSP95 that led to better solution accuracy of TSP100. 

Table 1: Experimental Results 

Algorithms 
Mean ± std of L2-Metric (×103) 

Target: TSP100 
Source: TSP95 

Target: TSP150 
Source: TSP130 

Target: TSP200 
Source: TSP190 

PMTEA 21.205 ± 0.36 29.497 ± 1.18 34.603 ± 0.44 
NT-PMTEA 22.522 ± 1.01 31.702 ± 1.23 38.617 ± 1.66 
GA 22.493 ± 0.68 30.895 ± 1.31 37.124 ± 1.79 
EHBSA 24.894 ± 0.84 39.302 ± 1.10 58.590 ± 1.75 

 

 

Figure 1: The learning of wk in PMTEA. 

4 CONCLUSION 
We have verified that route planning problems can benefit from 
past problem-solving experiences via transfer optimization. Our 
transfer optimization approach is capable of enhancing the 
solution accuracy of new target problems by automatically 
promoting positive transfer of knowledge from related source 
problems based on a source-target similarity measure learned 
online. In future, it would be interesting to affirm the benefits of 
our approach for a wider variety of combinatorial optimization 
problems, including real-world instances. 
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