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ABSTRACT
The Uncertain Capacitated Arc Routing Problem (UCARP) is an im-
portant combinatorial optimisation problem. Genetic Programming
(GP) has shown effectiveness in automatically evolving routing
policies to handle the uncertain environment in UCARP. However,
when the scenario changes, the current routing policy can no longer
work effectively, and one has to retrain a new policy for the new sce-
nario which is time consuming. On the other hand, knowledge from
solving the previous similar scenarios may be helpful in improving
the efficiency of the retraining process. In this paper, we propose
different knowledge transfer methods from a source scenario to
a similar target scenario and examine them in different settings.
The experimental results showed that by knowledge transfer, the
retraining process is made more efficient and the same performance
can be obtained within a much shorter time without having any
negative transfer.
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1 INTRODUCTION
Capacitated Arc Routing Problem (CARP) is a combinatorial op-
timisation problem based on a connected and undirected graph
G(V , E), where each node v ∈ V is an intersection, and each edge
e ∈ E is a street segment with a non-negative demand to be served
by a set of vehicles with limited capacity. The vehicles are located
at the depot (a special node in the graph). Serving or traversing
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through an edge incurs a serving or deadheading cost. The goal
of CARP is to find a set of minimum-cost routes for each vehicle
to serve the demand of the edges subject to a set of predefined
constraints [7]. To tackle uncertain environments, the Uncertain
CARP (UCARP) model was proposed in [6], which contains four
types of stochastic factors. Routing policy is a promising heuristic
which can generate the routes for UCARP (e.g. [4]) in real time.
Genetic Programming Hyper-Heuristic (GPHH) has shown success
in evolving effective routing policies for given scenarios. However,
the existing GPHH approaches evolve routing policies for differ-
ent scenarios separately without considering the relation between
them. In real world, different problem scenarios may be correlated
and it is reasonable to expect that the knowledge gained from one
scenario can help improve the retraining process of similar ones.

The overall goal of this paper is to propose new knowledge
transfer methods for evolving routing policies of UCARP efficiently,
given that some related problem scenarios have already been con-
sidered before. Specifically, it aims to develop knowledge transfer
methods based on sub-tree and terminal importance transfer; de-
sign proper mechanisms regarding (1) knowledge representation;
(2) knowledge extraction; and (3) knowledge usage in the target
domain for each knowledge transfer method.

2 THE METHOD
In this paper, we consider two knowledge representations for GPHH
based on (1) (sub-)Tree Transfer (GPHH-TT), and (2) Feature Im-
portance Transfer (GPHH-FIT).

2.1 GPHH with (sub-)Tree Transfer
The general idea of GPHH-TT is that an important (sub-)tree in
the source domain tends to be also important in the related target
domain, and thus should be used more often. Based on this idea,
GPHH-TT is described as follows.

2.1.1 Knowledge Extraction. For knowledge extraction, we con-
sider different mechanisms to extract (sub-)trees. (1) BestGen: select
the best individuals of each generation [1]; (2) Fulltree: select the
k% best individuals in the final population [1]; (3) Subtree: select
a random subtree of the k% best individual in the final population
[1]. (4) GTLKnow: select the best and median individuals from each
generation [3]; (5) TLGPCriptor: select random sub-trees of the
individuals that are better than average in the final population [2].

2.1.2 Knowledge Usage. For using the transferred (sub-)trees,
we directly imports them into the initial population in the target
domain. For TLGPCriptor, during the initialization phase and with
a probability of 50%, the sub-trees of the root are selected from the
transferred subtrees or generated randomly. This sub-tree creation
procedure is utilized in mutation as well.
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2.2 GPHH with Feature Importance Transfer
The proposed GPHH-FIT first calculates the feature importance for
each terminal in the source domain, then modifies and runs the
GPHH for the target domain by the calculated feature importance
in the target domain.

2.2.1 Knowledge Extraction. For each feature, the importance is
represented as a weight reflecting its contribution to the routing
policies in the source domain. First, the final population is cleared
by removing duplicated individuals. If there are multiple individuals
with the same fitness, the individual with the smallest depth is kept,
while all the remaining individuals are penalised by setting their
fitness to ∞. Then, the top 50% individuals in the final population
are selected and the contribution of each terminal is calculated by
the shuffle test proposed in [5]. Specifically, the contribution ζ (τ , x)
of a terminal τ to an individual x is defined as the difference between
the fitness of the tree with and without fixing the terminal τ to 1.
Feature weights are calculated by a weighted voting process. Each
individual votes for the terminals that contribute to it. Finally, the
weight of each terminal is defined as the total votes it receives. Here,
the voting power of each individual depends on its fitness. Since
UCARP is a minimisation problem, an individual with a smaller
fitness should have a larger voting power. The voting power of
each individual is calculated by (1) inverting the original fitness:
д(x) = 1

1+f it (x ) , ∀x ∈ Ω, where Ω is the set of all the individuals
evaluated in the source domain; (2) settingдmin = min{д(x)|x ∈ Ω},
дmax = max{д(x)|x ∈ Ω} and (3) normalising the inverted fitness:
pow(x) =

д(x )−дmin
дmax−дmin

.

2.2.2 Knowledge Usage. Intuitively, a more important feature
should be used more often in the GP tree. Therefore, by transferring
the feature importance to the target domain, rather than uniform
selection, we can modify the probability of selecting each terminal
so that more important features are more likely to be used.

3 EXPERIMENTAL STUDIES
To investigate the effectiveness of the proposed methods, we design
a number of source and target domain settings based on the same
medium and large-sized UCARP instance that differ from each other
in terms of the number of vehicles.

Overall, we report that there is no statistical difference between
the GPHHs with and without knowledge transfer in terms of the
final performance. Although the problem instances are complex the
heuristic space is fixed and defined by the GP parameter settings
which may lead to a relatively small search space for GP to find a
good result, eliminating the need for transfer knowledge. Also, it is
likely that the source and target domains are actually very different
so that the transferred knowledge are not reusable.

A major goal of knowledge transfer is to improve the retraining
efficiency in the target domain. To investigate this, we plotted the
convergence curves of the compared algorithms at each generation
of the retraining process in the target domain (e.g. Fig. 1) and noticed
that saw that the GPHH-TT approaches have much better starting
points and convergence speed (GPHH-TT algorithms converged at
around 20 generations earlier) than GPHH-FIT and without transfer.
This indicates that the transferred sub-trees are effective in the
target domain. The GPHH-FIT algorithms had some slightly better

Figure 1: Convergence curves of the compared algorithms
on val9D, from 10 to 11 vehicles

starting points than the standard GPHH but it was quickly caught
up by it. This shows that the transferred feature importance is
weaker in terms of reusability, which is as expected, since the
feature importance is a higher-level knowledge than sub-trees.

In our experiments, the feature weights vary from one dataset
to another which indicates that the transferred knowledge is do-
main specific. Another interesting observation is that the standard
deviation of the weights are very high which means the feature
weighting calculation is unstable and a weight can receive different
weights in different runs. This may be caused by the loss of diversity
of the individuals in the final population of the source domain.

4 CONCLUSIONS
In this paper, we proposed GPHH approaches with knowledge
transfer to improve the efficiency of the retraining process for the
routing policies of UCARP with two types of knowledge transfer
and examined them for extracting and reusing the knowledge.

Our experimental results showed that the knowledge transfer,
especially the sub-tree transfer, can greatly improve the training
speed in the target domain, and can achieve the same performance
within a much shorter time. The algorithms performed statistically
comparable, suggesting there is no negative transfer and demon-
strates the potential of improving the retraining process of GPHH
for UCARP by knowledge transfer.
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