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ABSTRACT

This work presents interesting multi-point search algorithms
exploiting several surrogate models, implemented in Mi-
namo, the multi-disciplinary optimization platform of Ce-
naero. Many types of surrogate models are used in the litera-
ture with their own forces and weaknesses. More generally,
each one models differently a given problem and provides
its own representation of the reality. The idea of this pa-
per is to exploit simultaneously different types of surrogate
models in order to catch automatically their forces and to
outshine some of their weaknesses. This strategy is based on
a multi-point enrichment at each iteration, each candidate
point being provided by one kind of surrogate model and/or
criterion. This strategy can be tuned by selecting different
infill criteria, based on different surrogate models, in order
to improve more specifically different aspects such as feasi-
bility, exploration and/or exploitation. The performance of
this surrogate-based optimization framework is illustrated on
well-known constrained benchmark problems available in the
literature (such as GX-functions and MOPTA08 test cases).
Good performance both in terms of identification of feasible
regions and objective gains is demonstrated.
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1 INTRODUCTION

A globally effective approach to optimization problems based
on computationally expensive high-fidelity computations lies
in the exploitation of surrogate models. They act as cheap-
to-evaluate alternatives to the original model reducing the
computational cost, while still providing improved designs. A
wide variety of techniques are available to build these models,
such as Radial Basis Function Networks (RBFN) or Kriging,
which all have their advantages and drawbacks, see [5]. The
underlying principle of Surrogate-Based Optimization (SBO)
consists in accelerating the optimization process by essen-
tially exploiting surrogates for the objective and constraint
evaluations, with a minimal number of function calls to the
high-fidelity model for keeping the computational time within
affordable limits [4].

One of the more popular approaches to select update points
in a SBO framework is the maximization of the Expected
Improvement (EI), see e.g. [8]. Studies have adapted EI to
find multiple update points [6, 12], which is the topic of this
study. Using multiple updates is far from a new idea, having
been notably explored by Schonlau [12]. With the availability
of parallel computing becoming commonplace, formulation of
multiple update infill criteria has received further attention
in past years [14].

Many works have been done on the use of multiple surro-
gates with success to enhance the robustness of the optimiza-
tion process, see e.g. [1, 3, 11, 13].

2 MULTIPLE SURROGATES-BASED
OPTIMIZATION STRATEGY

The purpose of this paper is to use multi-point strategies
with multiple surrogate models based on multiple instance
of evolutionary algorithms by using different infill criteria.
Infill sampling criteria aims to extract knowledge from the
surrogate models to find potential interesting areas for model
refinement in order to strike a balance between model ex-
ploitation and exploration (and possibly feasibility). Two
infill criteria have been considered in this work :

• Deb’s constraint tournament selection criterion [2] ;
• Constrained expected improvement (CEI) [10].

The main idea of our multi-point surrogate-based optimiza-
tion framework is to perform two evolutionary algorithms in
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parallel either based on different types of surrogate models
or based on different infill criteria. In these strategies, two
points will be evaluated at each iteration.

The following mono- and multi-point strategies will be
compared :

• MonoTRBF : Mono-point strategy using an auto-tuned
RBF (TRBF) meta-model and Deb’s constraint tour-
nament selection to deal with contraints ;

• MonoCEI : Mono-point strategy using a Kriging model
and CEI as infill strategy ;

• MultiCEI : Multi-point strategy with two evolutionary
algorithms, the first one exploiting Deb’s constraint
tournament selection with a TRBF model, the second
one based on CEI infill criterion with a Kriging meta-
model. This strategy combines MonoTRBF and MonoCEI

strategies ;
• MultiMeta : Multi-point strategy with two evolutionary
algorithms, both searches are based on Deb’s constraint
tournament selection but with either a TRBF model
or a Kriging model.

Figure 1 allows to compare globally the different strategies
on the whole set of benchmark problems via the performance
profiles (introduced in [9]). We can observe that both multi-
point strategies are very interesting compared to mono-point
strategies, in terms of efficiency as well as robustness.

(a) Fine Threshold (b) Large Threshold

Figure 1: Performance profiles of the different strate-
gies on the GX test cases. Percentage of solved prob-
lems with respect to α.

The proposed strategies have also been compared on the
MOPTA08 automotive problem, a benchmark test defined by
Jones [7] which enables to assess the efficiency of optimization
algorithms in a highly constrained, high-dimensional design
space. It defines a design space with 124 parameters, for an
optimization problem with a single objective and 68 inequal-
ity constraints. For the original benchmark problem, Jones
[7] provides one feasible initial point. Since for real-world in-
dustrial applications, feasible points are typically not always
available, the real challenge is to investigate the performance
of our strategies if only unfeasible initial points are considered.
For this purpose, a DoE of 125 points has been generated
without including the feasible initial point, and the opti-
mization has been launched in these unfavorable conditions.
Figure 2 shows the convergence in terms of objective function
and constraint violations (mean of 50 independent runs with

95% confidence interval) for the MOPTA08 problem. The
multi-point strategies can help to reach faster the feasible
region and with a good evolution of the objective function
convergence compared to a classical mono-point strategy.

(a) Objective function (b) Number of violated constraints

Figure 2: Evolution of the optimization in terms of
design iterations for MOPTA08 test case.
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