
Optimizing Permutation-Based Problems With a Discrete
Vine-Copula as a Model for EDA

Abdelhakim Cheriet
Kasdi Merbah University

Ouargla, Algeria
abdelhakim.cheriet@univ-ouargla.dz

Roberto Santana
University of the Basque Country (UPV/EHU)

San Sebastian, Spain
roberto.santana@ehu.es

ABSTRACT
In this paper, we introduce a copula-based EDA that uses a Discrete
Vine-Copula (DVC) model. This model is particularly suited to rep-
resent distributions in the permutation representation. To demon-
strate the effectiveness of the proposed Discrete-Vine-Copula based
EDAs (DVCEDA), we perform a set of experiments on instances of
the known TSP problems. The results obtained are promising to
extend the work on other class of problems.

CCS CONCEPTS
•Mathematics of computing→Combinatorial optimization;
Probabilistic algorithms; Discrete optimization; • Theory of compu-
tation → Discrete optimization; Evolutionary algorithms.

KEYWORDS
Optimization, permutation-based problem, estimation of distribu-
tion algorithm, copula, vine-copula, evolutionary algorithm.
ACM Reference Format:
Abdelhakim Cheriet and Roberto Santana. 2019. Optimizing Permutation-
Based ProblemsWith a Discrete Vine-Copula as a Model for EDA. In Genetic
and Evolutionary Computation Conference Companion (GECCO ’19 Compan-
ion), July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3319619.3321961

1 INTRODUCTION
Recently, estimation of distribution algorithms (EDAs), a class of
EAs that learn a probabilistic model of the best solutions have been
extended to deal with permutation-based problems [1]. In this paper,
we investigate the used of copula-based models [5] for representing
problems with a permutation representation. Copulas are functions
that allow defining a joint probability distribution in terms of its
univariate marginal distributions. This independence between the
way marginal distributions are defined and the function (copula)
used to specify the interaction between the marginal distributions,
provides great flexibility for modeling.

Our EDA is based on a variant of vines that allows to model
discrete variables [3]. Our goal is twofold, firstly, we want to deter-
mine whether copula-based models serve as an efficient approach

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321961

to permutation-representation problems in comparison to other
evolutionary algorithms. Secondly, we would like to know whether
the promising results reported for copula-based EDAs in the con-
tinuous domain hold also in the permutation domain.

2 DISCRETE VINE-COPULA (DVC)
Definition 2.1. A function C(u,v) : [0, 1]2 → [0, 1] is a copula if

and only if;
(1) For every 0 ≤ u ≤ 1 C(u, 0) = C(0,u) = 0
(2) For every 0 ≤ u ≤ 1 C(u, 1) = u and C(1,u) = u
(3) For every 0 ≤ u1 ≤ u2 ≤ 1 and every 0 ≤ v1 ≤ v2 ≤ 1

C(u2,v2) −C(u2,v1) −C(u1,v2) +C(u1,v1) ≥ 0

Copulas therefore satisfy the conditions of zero-grounded bivari-
ate distribution functions ofU andV with uniform margins. Hence
a probabilistic interpretation may be given in the same way as any
other joint cumulative distribution function (JCF)C(u,v) = Pr(U ≤

u,V ≤ v). Then the unique joint probability density function (JDF)

c(u,v) assocciated to C is such that C(u,v) =
u∫

−∞

v∫
−∞

c(υ,ν)dνdυ.

The relevance and utility of copulas are due to Sklar’s theo-
rem [5]. Thus, it is possible to separate the marginal behaviour
due to the individual contributions of the random variables X ,Y ,
described by its margins FX and FY respectively, and the depen-
dence structure, which is given by the copula C . Moreover, a key
feature of copulas is that they are invariant under strictly monotone
transformations of their random variables (U and V).

According the Sklar’s theorem [5], every CDF FX can be decom-
posed into margins F1, · · · , Fd and a copula. Sklar’s Theorem holds
for mixed discrete and continuous distributions and thus provides
a method to construct multivariate mixed distributions based on
CDFs of copulas and margins[2].

A vine on n variables is a nested set of trees T1, . . . ,Tn−1, where
the edges of tree j are the nodes of tree j + 1 with j = 1, . . . ,n − 2.
One of the special cases of vines is canonical vines (C-vines). In
C-vines, in each tree Tj there is a unique node connected to n − j
edges. The C-vine density is given by

n∏
k=1

f (xk)
n−1∏
j=1

n−j∏
i=1

c j, j+i |i, ..., j−1, (1)

For a vine with mixed margins, we sample from the correspond-
ing continuous vine and apply the inversion method with the in-
verse of the margin cumulative distribution function to obtain
mixed discrete and continuous samples. For mixed C-vine sam-
pling, the authors of [2] use the algorithm for sampling from a
continuous C-vine copula with uniform margins and then extend

143

https://doi.org/10.1145/3319619.3321961
https://doi.org/10.1145/3319619.3321961

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Abdelhakim Cheriet and Roberto Santana

it by means of the inversion method to attach arbitrary continuous
and discrete margins the detail of the algorithm can be found in [2]

3 DISCRETE VINE-COPULA BASED EDA
Our algorithm uses the mixed-vine copula model and incorporates a
local optimization procedure for permutations, in particular it uses
the 2-opt improvement method.The first step is the initialization of
the initial population P0 randomly. The next step is the selection
step where we select the best individual.

The second main step is the modeling or the estimation of the
distribution of the selected individuals. In this modeling step, we
create a C-vine copula with mixed variables. The dimension of the
vine equals the number of variables in the problem plus one, since
we add one dimension for the value of fitness function. The root
of the C-vine copula will be the value of the fitness function. The
discrete part of the input variables is the elements of the permuta-
tion and the continuous part is the value of the fitness value. The
vine will be truncated on the first level, this means that every posi-
tion of an element in the permutation has a dependence with the
global distance (fitness function value). For the generation step, the
created C-vine will be used to generate the new solutions and we
will drop the first value in every individual because it contains the
generated sample of the function value. The result of the generation
of permutations may contain repeated elements. Repeated elements
are replaced by elements that are not present in the permutation in
two ways: (1) Selecting one element not present at random.(2) Peek-
ing the element that has the minimum distance with the element
previous in the solution to the wrong element.

It is clear that the second way performs a local search. It takes an
element from the wrong elements in the permutation then search
for the best element in the adjacent of his predecessor (before it
in the permutation). This way spends more time than the random
one which we choose to use it. After this we perform a 2-opt local
improvement of the generated solutions but not in every genera-
tion. The algorithm runs until the stop criterion is met. The last
population found must contain the best solution found for problem.

4 EXPERIMENTS
We used the well-known benchmark suite TSPLIB95 [4] and we
compared our DVC-EDA with a stat-of-art genetic algorithm and
the Mallows Kernel EDA [1]. The parameters used by DVC-EDA
(Population size,Sampled individuals,Max number of generations)
are (100, 200,1000) while the The parameters for the GA (Population
size, Crossover probability, Mutation probability, Selection method,
Max number of generations) are (300, 0.7, 0.2, tournament, 1000), for
the Mallows Kernel EDA, we’ve fixed the best parameters according
to what is suggested in the original paper [1].

Table 1 shows the results of the algorithms. These results cor-
respond to a single execution of each algorithm since we focus
the comparison of the algorithms on the set of instances. It can
be seen that our proposal outperforms the classical GA and MK-
EDA in terms of fitness values. We also conducted a paired t-test
for each pair of algorithms to evaluate for statistical differences.
The results of the test showed that our algorithm outperforms the
other two methods: for DCV-EDA vs MK-EDA, a significance level

of p = 0.0001, and DCV-EDA vs GA (p = 0.006). There are also
significant differences between GA and MK-EDA (p = 0.006).

Benchmarks DCV-EDA MK-EDA GA Best
kroA150 36390.0 219684 98299.0 26524
gr21 2707.0 5916 2998.0 2707
kroE100 27727.0 138997 55083.0 22068
att48 11363.0 124683 13574.0 10628
kroA200 42065.0 292663 154614.0 29368
gr17 2085.0 3489 2085.0 2085
berlin52 8229.0 24495 11055.0 7542
kroC100 26716.0 137783 55020.0 20749
gr229 191306.0 1227850 667642.0 134602
bier127 145403.0 569743 286247.0 118282
gr137 91551.0 549964 237314.0 69853
gr202 52321.0 245048 144091.0 40160
gr48 5397.0 16192 6318.0 5046
gil262 3522.0 23764 14116.0 2378
kroB150 36165.0 209851 111237.0 26130
gr24 1279.0 2771 1434.0 1272
burma14 3323.0 4350 3323.0 3323
a280 3958.0 31005 18062.0 2579
ch130 7787.0 39897 17467.0 6110
hk48 12345.0 40611 16361.0 11461
kroD100 26322.0 132911 50116.0 21294
kroA100 27800.0 136418 59190.0 21282
rat99 1517.0 7243 2364.0 1211
kroB200 43193.0 288230 145862.0 29437
gr96 64132.0 318695 125660.0 55209
ch150 8973.0 45913 25416.0 6528
kroB100 27432.0 132025 60696.0 22141

Table 1: Results of the algorithms on the TSP benchmarks

5 CONCLUSIONS
In this work, we have addressed the use of a C-vine copula as a
model for EDAs. The C-vine copula used in this work is a mixed vine
copula, that is able to represent interactions between continuous
and discrete variables. Any candidate solution of the permutation-
based problem is treated as the discrete variable, and the value
of the fitness function is treated as the continuous variable. The
experiments conducted have shown that the introduced algorithm
produces good results compared to evolutionary algorithms, in
particular the Mallows-model algorithm. One limitation of the C-
vine modeling approach is that the learning methods it requires are
hard to scale for large number of variables. This approach may not
be suitable for problems with very large dimensions.

ACKNOWLEDGMENTS
R. Santana acknowledges support from the IT-609-13 (Basque Gov-
ernment) and TIN2016-78365-R (Spanish Ministry of Economy, In-
dustry and Competitiveness) programs.
A. Cheriet acknowledges the computing resources provided on the
HPC operated by the PTCI of Kasdi Merbah University Ouargla.

REFERENCES
[1] Josu Ceberio, Alexander Mendiburu, and Jose A. Lozano. 2015. Kernels of Mallows

Models for Solving Permutation-based Problems. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation (GECCO ’15). ACM, New
York, NY, USA, 505–512. https://doi.org/10.1145/2739480.2754741

[2] Arno Onken and Stefano Panzeri. 2016. Mixed vine copulas as joint models of
spike counts and local field potentials. InAdvances in Neural Information Processing
Systems. 1325–1333.

[3] Anastasios Panagiotelis, Claudia Czado, and Harry Joe. 2012. Pair copula con-
structions for multivariate Discrete Data. J. Amer. Statist. Assoc. (2012).

[4] Gerhard Reinelt. 1995. TSPLIB95. Interdisziplinäres Zentrum für Wissenschaftliches
Rechnen (IWR), Heidelberg 338 (1995).

[5] Abe Sklar. 1973. Random variables, distribution functions, and copulas. Kybernetica
(1973), 449–460.

144

https://doi.org/10.1145/2739480.2754741

	Abstract
	1 Introduction
	2 Discrete vine-copula (DVC)
	3 Discrete vine-copula based EDA
	4 Experiments
	5 Conclusions
	Acknowledgments
	References

