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ABSTRACT
In this paper, we analyze the convergence behavior of Differential
Evolution (DE) and theoretically prove that under certain adversar-
ial conditions, the generic DE algorithm may not at all converge
to the global optimum even on apparently simpler fitness land-
scapes. We characterize these function classes and initialization
conditions theoretically and provide mathematical supports to the
non-convergence behavior of DE. To overcome these adversarial
conditions, we propose a slightly modified variant of DE called
Differential Evolution with Noisy Mutation (DENM), which incor-
porates a noise term in the mutation step. We analytically show
that DENM can converge to the global optima within a finite budget
of function evaluations.
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1 INTRODUCTION
Storn and Price proposed the Differential Evolution (DE) [1, 5] al-
gorithm in 1995 as an efficient yet simple population-based global
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optimization algorithm for the continuous parameter space (⊆ Rp ).
Even though the DE algorithms are quite popular, little is known
about its theoretical convergence behavior [2, 4]. In this paper, we
investigate by rigorously exploring the non-convergence behavior
of DE for a broader class of functions and under some adversarial
conditions imposed on the population initialization. We also pro-
pose a remedy to overcome such stagnation or false convergence to
a non-optimal point by DE in terms of a modified mutation scheme.
We theoretically analyze the convergence behavior of the proposed
algorithm, referred to here as DE with Noisy Mutation (DENM).

2 ON SOME DEROGATORY PROPERTIES OF
THE MUTATION AND CROSSOVER IN DE

The following results hold true for any norm | | · | |, for discussing
properties of DE crossover, we in particular take the l∞ norm. More-
over, BM (x) and B̄M (x) respectively denote the open and closed
ball of radius M centered at x.
Lemma 1. Let x, y, z ∈ BM (x∗) be distinct. Let x′ = x + F (y − z)
then ∃M ′ ≥ M such that x′ ∈ BM ′(x∗).
Theorem 1. Let x0, . . . , x2k ∈ X and X is contained in an affine
space A of Rp . Then the vector x = xi0 +

∑n
i=1 Fi (x2i−1 −x2i ) ∈ A.

Remark 1. The binomial crossover between two vectors x and
y can be represented as fa(x, y) = a ◦ x + (1 − a) ◦ y for some
a ∈ {0, 1}p , where ◦ is the Hadamard product.
Theorem 2. Let x and y ∈ A, where A is an axis parallel affine
space of Rp . Let fa : A × A → Rp be such that fa(x, y) =
a ◦ x + (1 − a) ◦ y, a ∈ {0, 1}p . Then range of fa ⊆ A.
Theorem 3. If x, y ∈ B∞M (z) and a ∈ {0, 1}p , then fa(x, y) ∈

B∞M (z)∀z ∈ Rp .

3 THEORETICAL ANALYSIS OF THE
NON-CONVERGENCE OF DE

Adversarial Condition 1. Let X(0) = {x1, . . . , xNp } ⊂ A, where
A is an axis-parallel affine space. If X (t ),∀t is updated using only
mutation and crossover, then ∀t ∈ N, X(t ) ⊂ A, i.e. under initial-
ization on an axis parallel flat S, the population cannot escape it.
Adversarial Condition 2. If the initial population is set too close
to the optima and the value of the mutation parameter F is large
enough, the standard DE algorithm fails to converge. In other words,
if ∃M ′ > M and ∥x − x∗∥ > M ′, f (x) > supx∈BM (x∗) f (x), then
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there exists some F0 > 0 such that DE will not make any changes
to the population when F > F0.
Adversarial Condition 3. Let us take those functions which have
broad local optimal basins alongside a narrow global optima i.e.
f : S → R, S ⊆ Rp be any function, and ∃x∗local ,M,M ′. If the
population is initialized sufficiently inside a local optimal basin then
DE fails to reach the global optima in a finite number of iterations,
under the following regularity conditions:

(1) ∃x∗local ∈ Rps .t . f (x∗дlobal ) < f (x∗local )

and x∗дlobal < B
∞
M ′(x

∗
local ).

(2) supx ∈B∞
M (x ∗

local )
f (x) ≤ infy∈B∞

M′ (x ∗
local )\B

∞
M (x ∗

local )
f (y).

(3) M ′ > M + 2MF

In other words, if x (0)i ∈ B∞M (x∗local )∀i ∈ {1, . . . ,Np}, then x
(t )
i ∈

BM (x∗local )∀i ∈ {1, . . . ,Np},∀t ∈ N ∪ {0}.

4 THE PROPOSED ALGORITHM AND ITS
CONVERGENCE BEHAVIOUR

We propose a remedy in form of Algorithm 1 to overcome the ad-
versarial conditions in Section 3. Convergence of the algorithm
is established through Theorems 4 and 5. The efficacy of the pro-
posed DENM algorithm over DE/rand/1 with respect to adversarial
condition 1 is illustrated in Fig. 1.

Algorithm 1: Differential Evolution with Noisy Mutation (DENM)

Input: F, F , Cr, tmax . Output: x(tmax )

best (The best member at termination).
Generate x1, . . . , xNp uniformly within the search range.
for t=1 to tmax do

for i= 1 to Np do
Select r1, r2, r3 uniformly at random from {1, . . . , Np } \ {i };
Compute v(t )i = x(t )r1 + F (x

(t )
r2 − x(t )r3 );

Generate additive noise e(t )i from CDF F and let w(t )
i = v(t )i + e

(t ) ;
Select jrand uniformly at random from {1, . . . , p };
for j =1 to p do

uj,i,t =
{
vj,i,t if randi, j [0, 1] ≤ Cr or j = jrand
x j,i,t otherwise.

zj,i,t =
{
w j,i,t if randi, j [0, 1] ≤ Cr or j = jrand
x j,i,t otherwise.

end
if f (u(t )i ) ≤ min {f (x(t )i ), f (z(t )i )} then replace x(t )i by u(t )i ;
else if f (z(t )i ) ≤ min {f (x(t )i ), f (u(t )i )} then replace x(t )i by z(t )i ;
else keep x(t )i ;

end
end

Given an indicator function I (.), an objective function f (.), and a
setQϵ = {x| f (x)− f (x∗) < ϵ}, the first hitting time N (ϵ) is defined

as: N (ϵ) = inf
{
t :

∑Np
i=1 I (x

(t )
i ∈ Qϵ ) > 0

}
.

We will assume the following on the objective function f .
• ∃ x∗ such that f (x∗) ≤ f (x) for all x ∈ Rp .
• The set Qϵ contains a Bδ (ϵ )(x∗) for some δ (ϵ) > 0.
• The set Lb = {x| f (x) ≤ b} is bounded for all b ∈ Ranдe(f ).

We can infer the DENM/rand/1 converges if at least one point
of X(t ) lies in Qϵ . We impose the following regularity conditions
on F :

• F admits a Radon-Nikodym derivative (say h) with respect
to the Lebesgue measure on Rp .

• h has the property that h(x) > 0 for all x ∈ Rp .
• ∃ H > 0 such that h(x) ≤ H ∀x ∈ Rp .

Theorem 4. The first hitting time N (ϵ) is finite with probability 1.
Theorem 5. The expectation of the first hitting time is finite, i.e.
E(N (ϵ)) < ∞.
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Figure 1: Experimental results on CEC 2013 functions in
terms of convergence chracteristics [3] for DE/rand/1. (a)
Sphere Function. (b) Rotated High Conditioned Elliptic
Function. (c) Rotated Bent Cigar Function. (d) Rotated Dis-
cus Function.
5 CONCLUSION
In this paper, we theoretically established the fact that the DE algo-
rithms might not converge for poor initialization and ill-behaved
functions. To overcome these adverse situations, we proposed a
remedy by adding random noise to the mutant vector and provided
a detailed mathematical study on the convergence of the proposed
algorithm. One may attempt to improve the bounds on the expecta-
tions of the first hitting time and study the convergence behavior
of the population distribution to the optima in terms of the Wasser-
stein distance, as it better captures the metric properties of the
underlying distribution in the context of optimal transport.
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