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ABSTRACT
The Convex Search Algorithm (CSA) is a generalization across
representations of Evolutionary Algorithms (EAs) with crossover
and no mutation. The Standard Evolutionary Search Algorithm
(SESA) is a more accurate generalization of EAs with crossover
and no mutation, using a standard two-parents crossover. This
work extends the runtime analysis of the CSA on quasi-concave
landscapes [4] to the SESA. We instantiate the analysis to binary
strings and integer vectors endowed with the Hamming distance
and the Manhattan distance. We find that the SESA requires a
larger population size to converge to a global optimum; resulting
in a larger runtime upper bound than the CSA. Empirical studies
on LeadingOnes confirmed the existence of a smallest population
size above which both algorithms are guaranteed to find the global
optimum. Below this threshold, the SESA is less successful than the
CSA.
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1 MOTIVATION
EAs with crossover and no mutation have been generalized across
representations as CSA [2]. Nevertheless, the CSA is not common in
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practice as it makes use of a population based operator called convex
hull recombination. Indeed, most crossover operators are general-
ized across representations by geometric crossover; which picks an
offspring in the geodesic segment of two parents [1, 3]. Hence, a
more accurate algorithm that generalizes EAs with crossover and
no mutation across representations, should make use of geometric
crossover instead of convex hull recombination. The runtime of
an EA with crossover and no mutation across representations has
only been analysed in [4] for a general EA with only a convex hull
recombination. We extend the result across representations of [4]
by considering EAs with only a geometric crossover.

2 METHOD
When both the geometric crossover and the convex hull recombina-
tion sample the convex hull of the parent population, the runtime
analysis of the CSA on quasi-concave landscapes in [4] can be
readapted. This is done by considering the worst case uniform off-
spring distribution on quasi-concave landscapes; for an EA with
only a geometric crossover. Recall from [4], that a level set contains
individuals whose fitness are at least a fixed threshold value. Fur-
thermore, the level sets of a quasi-concave landscape are always
geodesically convex. A parent population P ′ covers a level set L en-
tirely, when the convex hull co(P ′) of P ′ equals the level set L. The
probability that the convex hull of k individuals sampled uniformly
at random from P ′ covers the level set L is denoted PcovM (k). The
runtime analysis is done in four steps that are summarized below.

(i) Estimate a lower bound on the probability that the next
parent population covers a level set that is strictly higher
than the level set covered by the current parent population,

(ii) Estimate a lower bound on the probability that a strictly
higher level set is always covered at each generation,

(iii) Estimate the smallest population size for which the lower
bound of Step ii is greater than or equals 0.5,

(iv) Estimate the worst runtime corresponding to the smallest
population size obtained in Step iii.

3 RESULTS
Both the geometric crossover and the convex hull recombination
sample the same set of offspring in metric spaces where the set
Seд(A), of the union of all the segments that can be made out of
the points of A, is geodesically convex for any subset A. A counter
example where the sets Seд(A) and co(A) do not coincide is illus-
trated in Figure 2. The union of all the segments that can be made
out of the points of A is Seд(A) = {x1,y1,x2,y2,x ,y}. Let us con-
sider the segment [x ,y] whose extremes are points of Seд(A). We
have [x ,y] = {x1,y1,x2,y2,x ,y, z}. We can see that z ∈ [x ,y] but
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Table 1: Lower bound µ0 on the population size for which the algorithm finds a global optimum with probability at least 0.5.

({0, 1}n ,HD) ({0, 1, . . . ,d − 1}n ,HD) ({0, 1, . . . ,d − 1}n ,MD)
m2

0 log2[(4q+6)n]
r

dm2
0 ln[2(q+2)dn]

r
dm2

0 ln[4(q+2)n]
r

Figure 1: Average success rates for theConvex SearchAlgorithm (CSA) and the Standard Evolutionary SearchAlgorithm (SESA)
on LeadingOnes against the average lower bound on the success probability.
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Figure 2: The set Seд(A) where A = {x1,x2,y1,y2} is not a con-
vex set

z < Seд(A) though x ,y ∈ Seд(A). Thus, the set Seд(A) is not geodesi-
cally convex and therefore does not coincide with co(A).

We also found that the offspring distribution corresponding to
the geometric crossover is not uniform on the convex hull of the
parent population, as for the case of the convex hull recombination.
However, by considering the worst case where the offspring are
uniformly distributed with the least possible probability, we were
able to readapt the analysis of the CSA for the SESA. The lower
bound of Step ii is given by

b(m, l) =
[
PcovM

(
µr
m2

)]q+1
− q exp

[
−
µr
2

(
l 2−1
l 2

)2]
, (1)

where µ is the population size, the parameterm (resp. l ) is the largest
(resp. smallest) size of the parent population at each generation,
r < 1 is the smallest ratio of the sizes of two consecutive level sets,
and q + 1 is the total number of distinct level sets. Hence, Equation
(1) is bounded below by

b = min
1≤l ≤m≤µ

b(m, l). (2)

Letm0 and l0 be solutions of Equation (2). A lower bound µ0 on
the population size for which (2) is at least 0.5 can be computed for
({0, 1}n ,HD), ({0, 1, . . . ,d − 1}n ,HD), and ({0, 1, . . . ,d − 1}n ,MD)
usingm0. In this case, the SESA finds a global optimum within 2µ0q
fitness evaluations. Table 1 gives a summary of the different values
of µ0 for eachmetric space. Empirical results on LeadingOnes shown
in Figure 1, confirmed that the SESA requires a larger population
size to find a global optimum with probability at least 0.5.

4 CONCLUSION
Deriving solutions for Equation (2) is not straightforward, as it
is a function of two variables. Consequently, the bounds on the
population size shown in Table 1 can not be computed unless a
solution to Equation (2) is found. Therefore, the results above are
only useful in comparing theworst success rates of the SESA and the
CSA on quasi-concave landscapes. Moreover, the current analysis
of the SESA on quasi-concave landscapes is restricted to metric
spaces where the set Seд(A) is geodesically convex for all subsets
A. A different analysis needs to be devised for metric spaces where
a non geodesically convex set Seд(A) exists for some subset A.
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