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ABSTRACT
The use of Convolutional Neural Networks (CNNs) have
proven to be a solid approach often used to solve many Ma-
chine Learning problems, such as image classification and nat-
ural language processing tasks. The manual design of CNNs
is a hard task, due to the high number of configurable pa-
rameters and possible configurations. Recent studies around
the automatic design of CNNs have shown positive results.
In this work, we propose to explore the design of CNN ar-
chitectures through the use of Grammatical Evolution (GE),
where a BNF grammar is used to define the CNN components
and structural rules. Experiments were performed using the
MNIST and CIFAR-10 datasets. The obtained results show
that the presented approach achieved competitive results and
maintaining relatively small architectures when compared
with similar state-of-the-art approaches.
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1 INTRODUCTION
Convolutional Neural Networks (CNNs) are a powerful ap-
proach usually applied to computer vision tasks [9, 10]. The
use of CNNs is one of the reasons on why Deep Learning
(DL) is a very popular area of study in recent years [8, 11].
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Designing CNNs is a complex task, due to the high number
of possible configurations, including selecting layers and layer
parameters. Thus, the use of techniques that automatically
design CNN architectures have become more attractive. The
construction of CNN architectures can be expressed as a
hyperparameter optimization problem [1, 2], where layers
and layer parameters are all considered variables that can
be optimized using search techniques, such as evolutionary
algorithms [7, 9, 10].

In this work, we deal with the design of CNNs using
Grammatical Evolution (GE). It is a flexible approach that
uses a context-free grammar to describe how to build CNN
architectures. The models are executed to compute the fitness.
An empirical study is made to evaluate the approach on image
classification tasks using the MNIST [6] and CIFAR-10 [5]
datasets, comparing the results with other state-of-the-art
approaches.

2 DESIGNING CNN ARCHITECTURES
WITH GRAMMARS

The approach we propose is very straight forward. Through
the search engine (GA), a population of solutions iteratively
selects, modifies, evaluates and replaces solutions, in order
to improve the quality of the population. At the evaluation
step, first the solutions have to be translated into an actual
CNN. Then, the model is executed on the training set and
the fitness is computed based on the performance on the
evaluation set. Figure 1 summarizes the process.

BNF
Grammar

Dataset

Selection Cross/Mutation Evaluation Replacement

EvaluationInteger Solution

Derivation Tree

Neural Network

Figure 1: Representation of the proposed approach. While
the evolutionary algorithm is very simple, the evaluation step
is where the solutions are translated from integer vectors to
CNN architectures using the BNF grammar and then exe-
cuted to compute the fitness.

The proposed Grammar (Figure 2) was built to offer
enough flexibility in the design of either a small network
(one convolution and one dense layer, for example) or even
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bigger networks with many layers. In this work, we focused
only on sequential architectures, where the models are formed
by stacked layers, each with its own parameters.

⟨cnn⟩ ::= ⟨conv⟩ ⟨c_layer⟩ ⟨d_layer⟩ ⟨dense⟩

⟨c_layer⟩ ::= ⟨c_layer⟩ ⟨c_layer⟩ | ⟨c_node⟩ | ’&’

⟨d_layer⟩ ::= ⟨d_node⟩ ⟨d_node⟩ | ⟨d_node⟩ | ’&’

⟨c_node⟩ ::= ⟨conv⟩ | ⟨maxpool⟩ | ⟨avgpool⟩

⟨d_node⟩ ::= ⟨dense⟩ | ⟨dropout⟩

⟨conv⟩ ::= ‘Conv2D’ ⟨filters⟩ ⟨k_size⟩ ⟨activation⟩

⟨dense⟩ ::= ‘Dense’ ⟨units⟩

⟨dropout⟩ ::= ‘Dropout’ ⟨rate⟩

⟨maxpool⟩ ::= ‘MaxPooling2D’ ⟨p_size⟩ ⟨padding⟩

⟨avgpool⟩ ::= ‘AveragePooling2D’ ⟨p_size⟩ ⟨padding⟩

⟨activation⟩ ::= ‘relu’ | ‘selu’ | ‘elu’
| ‘tanh’ | ‘sigmoid’ | ‘linear’

⟨padding⟩ ::= ‘valid’ | ‘same’

⟨filters⟩ ::= ‘16’ | ‘32’ | ‘64’ | ‘128’

⟨k_size⟩ ::= ‘(3, 3)’ | ‘(5, 5)’ | ‘(7, 7)’

⟨p_size⟩ ::= ‘(2, 2)’ | ‘(4, 4)’| ‘(6, 6)’

⟨units⟩ ::= ‘32’ | ‘64’ | ‘128’ | ‘256’

⟨rate⟩ ::= ‘[0.0, 1.0]’

Figure 2: Proposed grammar to generate CNN architectures.

3 EXPERIMENTS
This experimental step will be used to evaluate our approach,
here called GE-CNN. To do this, 5 independent runs were
performed, with both 600 and 1000 max evaluations. During
the evolution, each model is trained for 50 epochs using
the training set, and then executed on the validation set to
calculate the fitness. The optimizer used was Adam [4]. For
the evolutionary algorithm, the genetic operators we used are:
random selection, one-point crossover, point mutation, prune
and, duplication. At the end, the best design found is executed
again on the training set, this time for 500 epochs, and then
tested 30 times using the test set. The experiments were
performed using the MNIST [6] and CIFAR-10 [5] datasets.

The best accuracy reported for the MNIST experiment
(Table 1) is 98, 95% from the LDANet-2 [3], considering only
the mean value. Our approach was able to achieve an accuracy
of 99, 03% on the best case, and 98, 78% on average among
30 runs. Similarly, for the CIFAR-10 (Table 2), GE-CNN
achieved an accuracy of 76, 34% on the best case and 72, 84%
on average, a very similar result compared to the CGP-CNN
(ResSet) [9] approach, that achieved an accuracy of 76, 53%
on average. The generated models have a relatively small
design with 5 and 7 layers respectively.

Table 1: Experiments with
MNIST dataset

Model Acc
ScatNET-2 98,73
RandNet-2 98,75
LDANet-2 98,95
EUDNN/AE 98,78
GE-CNN (mean) 98,78
GE-CNN (best) 99,03

Table 2: Experiments with
CIFAR-10 dataset

Model Acc
VGG 75,89
ResNet 75,90
CGP-CNN(ConvSet) 76,52
CGP-CNN(ResSet) 76,53
GE-CNN (mean) 72,84
GE-CNN (best) 76,34

4 CONCLUSION
In this study, we proposed the use of Grammatical Evolution,
that uses a context-free grammar to define the architecture
layers and parameters to build CNNs. According to the ex-
periments, our approach GE-CNN presented a simple and
flexible approach to design CNN architectures. The evolu-
tionary algorithm from GE can develop the architectures
over time, maintaining the networks with a relatively small
design, achieving competitive results. Still, there are many
unexplored topics regarding the automatic design of deep
neural networks. Expanding the representation power of the
grammar by using more complex types of layers and network
structures. Also, testing different evolutionary algorithms as
the search engine, exploring different encoding and operators,
as well as finding new ways to decrease the complexity and
cost related to the evaluation step.
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