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ABSTRACT
We introduce a new enhanced algorithm with a population en-
tropy based population adaptation strategy under the framework
of SHADE (PE-SHADE). The distribution state of the population
is characterized, and then the population size is adapted with a
population increasing strategy and a population reduction strategy.
Experimental results on CEC2014 statistically support the effective-
ness of the proposed algorithm.
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1 INTRODUCTION
Due to its simple structure, easy implementation and fewer control
parameters, Differential Evolution (DE) [5] has attracted substantial
attention in both theoretical studies and engineering applications.
Among the three basic control parameters of DE, the population
size (PS) has a influence on the allocation and balance of resources.
An Excessive PS is good for global exploration but consumes many
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fitness evaluations. Otherwise, a too small PS will make for ex-
ploitation but easily leads to early convergence as well. Although
the research on PS is not so mature, many achievements have also
been made [4].

The entropy is one of the parameters that characterize the state
of matter in thermodynamics, and is used as a measure of the degree
of chaos in the system. In this paper, a population-entropy-based
method is proposed to characterize the distribution state of the pop-
ulation along with a population increasing strategy and a reduction
strategy. And then a new algorithm PE-SHADE is proposed as an
enhancement of the algorithm SHADE [6].

2 PE-SHADE
In this paper, all of the entropy values mentioned below are calcu-
lated based on the expression of the information entropy. In order
to simplify the calculation, the entropy value of dimension i at
generation д is calculated first as Eq. 1 shows.

Ei,д = −

PS∑
j=1

pj,д logpj,д(i = 1, ...,D) (1)

where each dimension in the decision space is evenly divided into
PS intervals, D denotes the problem dimension, and at generation
д, the probability that the individuals fall into each interval is pj,д .

pj,д =
Nj,д

PS
(j = 0, ..., PS) (2)

where Nj,д is the number of individuals fall into the j-th interval
of dimension i at generation д. Then the entropy value of each
dimension is multiplied as the final population entropy value Eд at
generation д.

Eд =
∏

Ei,д(i = 1, ...,D) (3)

Each generation, the ratio of the current population entropy value
and the one at last generation is calculated to judge the popula-
tion distribution state, according to which the corresponding PS
adaptation strategy is adopted. The ratio R can be expressed as
following.

R =
Eд+1

Eд
(4)
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Every N generations, namely mod(д,N ) = 0 where д refers to
the current generation, the average value of the R values is cal-
culated, denoted by Ravд , and then determine how to adapt the
PS value. The setting of N = 4 is referred to [4]. When the num-
ber of evaluations NEFs < 0.2 × MaxNEFs , it is believed that if
rand(0, 1) > Ravд , Ravд is probably a small value, so the popula-
tion become concentrated at the early stage. At this time, rate1×PS
individuals are randomly generated to help slow down the converg-
ing. If the PS exceeds the upper bound PSmax , it will be truncated to
PSmax . And when NEFs ≥ 0.2×MaxNEFs , the convergence speed
is considered slow if rand < Ravд , and the worst rate2×PS individ-
uals will be removed from the population. The population size can
be reduced to the lower bound PSmin at most. Here, rate1 = 0.3,
rate2 = 0.05, and it will be discussed in detail in Section 3.

3 EXPERIMENT
This section discusses the performance of the proposed PE-SHADE
on the CEC2014 Special Session on Real-Parameter Single Objec-
tive Optimization benchmark suit [3], including the performance
comparisons with SHADE[6], L-SHADE[7], UMOEAs[2], CoDE[8],
JADE[9] and jDE[1]. Experiments were conducted on CEC2014
benchmark (D = 30, 50, 100) andMaxNFEs = 10000 × D. For each
function, each algorithm was tested on it for 51 times, and the per-
formances of the algorithms were evaluated in terms of function
error value [3], defined as f (X ) − f (X ∗), where X ∗ was the global
optimum of the test problem.When the function error was less than
10−8, it was treated as 0, and the average of the 51 function error
values for each function was evaluated. The PS varies in a given
range, and PSmax = 10×D, PSmin = D, while the initial population
size PSinit = 100, which have referred to some conclusions in [4].

Table 1: Comparisons between PE-SHADE and DE variants
on CEC2014 benchmark D=30, 50, 100

D SHADE UMOEAs CoDE JADE jDE L-SHADE

D=30 + 2 4 2 2 2 12
- 18 18 19 22 22 5
= 10 8 9 6 6 13

D=50 + 5 4 3 4 2 10
- 16 21 24 21 23 10
= 9 5 3 5 5 10

D=100 + 4 10 3 2 4 11
- 16 15 22 23 19 11
= 10 5 5 5 7 8

The results are shown in Table 1. To effectively analyze the re-
sults, the Wilcoxon’s rank-sum test at α = 0.05 was performed to
help compare the performance. In the tables, the symbols ′+′,′ −′,′ =′

respectively mean that the corresponding algorithm is significantly
better than, significantly worse than or comparable with the pro-
posed algorithm PE-SHADE on CEC2014 benchmark problems.

In general, the comprehensive improvements of PE-SHADE, com-
pared with SHADE, over these three dimensional problems, have
clearly proven the effectiveness of the proposed PS adaptation
strategy, while the comparisons with UMOEAs and the classic DE

variants, namely CoDE, JADE and jDE, show the advantages of PE-
SHADE as a whole. When comparing with L-SHADE, PE-SHADE is
worse than L-SHADE on the 30-dimensional problems, however, it
performs comparably to L-SHADE on the 50-dimensional problems
and 100-dimensional problems. This indicates that PE-SHADE also
has potential for competing with other PS adaptation algorithms.

The parameters rate1 and rate2 were used to control the increas-
ing rate and reduction rate of the population size respectively. A sim-
ple sensitive test has been done about these two parameters, where
rate1 = 0.1, 0.3, 0.5 and rate2 = 0.05, 0.1, 0.3, and the experiments
have been done with the random combinations of these values of
these two parameters on CEC2014 benchmarks withD = 30, 50, 100.
Due to the space constraints, the detailed results will not be shown
here. Overall, the combination rate1 = 0.3, rate2 = 0.05 is recom-
mended.

4 CONCLUSIONS
This paper has proposed an extension variants of SHADE, namely
PE-SHADE, with a population entropy-based PS adaptation strat-
egy, and the experimental results have shown the effectiveness
and efficiency of PE-SHADE. Nevertheless, some more attention
should be paid to the deeper impact of PS adaptation strategy on
the changing of population distribution states and the division of
the search space when calculating the population entropy.
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