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ABSTRACT
Thiswork proposes a biased randomkey genetic algorithm (BRKGA)
for the integrated scheduling of manufacturing, transport, and stor-
age/retrieval operations in flexible manufacturing systems (FMSs).
Only recently, research on this problem has been reported; however,
no heuristic approaches have yet been reported. The computational
results show the BRKGA to be capable of finding good quality
solutions quickly.
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1 INTRODUCTION
In an FMS environment a set of multipurpose machines, a set of au-
tomated guided vehicles (AGVs), and an automated storage/retrieval
system (AS/RS) cooperate under the control of a central computer
system. In such systems, a part (job) stored in a cell of the AS/RS
is retrieved by the shuttle and taken to the load/unload (LU) area,
from where an AGV takes it to the machine processing its first
operation. (A job consists of a set of manufacturing operations.)
When a machine finishes processing an operation, an AGV takes
the job to the machine processing the next one or to the LU area, if
it is its last operation. Once the job is back at the LU area, the shuttle
transports and delivers it to the corresponding storage cell. Since
manufacturing operations, transport tasks, and storage/retrieval
(s/r) are interrelated they need to be scheduled simultaneously.
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Jawahar et al. [7] address storage allocation within FMSs consid-
ering that machine processing time includes transportation time;
thus assuming an unlimited number of AGVs. Chetty and Reddy [3]
develop a two-stages approach that first solves the job scheduling
problem and then schedules the needed shuttle tasks. Gnanavelbabu
et al. [4] determine the sequence of jobs (rather than operations)
both for machines and AGVs. An AGV is dedicated to a job until its
completion and then returned to the LU to be allocated to the next
job. The sequence of s/r operations is determined afterwards.

Previous approaches address the problem components separately,
which may lead to sub-optimal solutions or even infeasible ones.
As far as we are aware of, the only work addressing the integrated
scheduling of machines, AGVs, and s/r operations is that of Homay-
ouni and Fontes [6], which proposes a mixed integer linear pro-
gramming (MILP) model. However, heuristic approaches are yet
to be proposed. Thus, our main contribution is the development
of a heuristic approach, a biased random key genetic algorithm
(BRKGA), capable of quickly finding good quality solutions for the
integrated scheduling problem.

2 PROBLEM DESCRIPTION
In the manufacturing area J independent jobs are to be processed,
each job comprises nj , j ∈ J , ordered operations. Each operation
is characterized by a processing machine and a processing time.
For each job, there are potentially nj − 1 transport tasks between
machines and two between the LU and the machines processing
the first and last operations of the job. The transport tasks are
performed by identical AGVs carrying one job at the time with
known travelling times.

Each job is stored at a known storage cell of the AS/RS and
is returned to it once all its operations have been completed. The
AS/RS is comprised of two racks of storage cells and a shuttle moves
along the aisle between the racks to pick up and drop off the jobs. As
in [7] the shuttle travelling time is calculated using the Chebyshev
distance between two storage cells or between a storage cell and the
LU area. We assume a sufficiently large buffer at both the machines
and the LU area, where jobs may wait if necessary.

3 THE PROPOSED BRKGA
Random keys genetic algorithms (RKGAs) were originally proposed
by Bean [1] specifically for problems involving sequencing. RKGAs
represent a solution to the problem as a vector of real numbers in
the interval [0, 1], which needs to be decoded into a solution to
the original problem. The main advantages of using random keys
are: i) high locality and heritability, ii) relative importance between
operations, and iii) ensuring solution feasibility. The BRKGA pro-
posed here uses the framework of [5], which can be applied to a
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wide range of problems, e.g. [8], as it searches the solution space
of the optimization problem indirectly by searching the continu-
ous n-dimensional unit hypercube. Solutions in the hypercube are
mapped onto solutions to the optimization problem, where the fit-
ness is evaluated, by a decoder. Thus, to specify a BRKGA we only
need to define the chromosome representation and the decoder.

For the problem being addressed a chromosome has two parts:
the operations sequence (part X ) with N + 2J genes and the vehicle
assignment (part Y ) with N + J genes, where N =

∑J
j=1 nj . To

decode part X , we use the smallest position value (SPV) rule [1]
to sort the vector of random keys. Then, we convert the indices of
the sorted random keys into job numbers. Finally, job numbers are
translated into operations by associating the first job appearance
with its first operation, the second job appearance with its second
operation, and so on. For partY , the interval [0, 1] is equally divided
into V sub-intervals, where V is the number of available AGVs. A
random key in

[ i−1
V ,

i
V
]
is translated into AGV i , with i = 1, . . . ,V .

From left to right in part Y , the specified AGV is assigned to trans-
port the job for the corresponding operation in part X , except for
the first operation of each job, since it corresponds to a retrieval
operation. Figure 1 illustrates a chromosome and its decoding for
an instance with two jobs, each with two manufacturing operations,
and two AGVs.

Figure 1: A sample solution and its decoding procedure.

Following on the framework proposed in [5], the initial popula-
tion is randomly generated. Once the fitness of each individual of a
generation, say k , has been calculated, the population is partitioned
into a small group of elite solutions and the rest of population.
The population of generation k + 1 is obtained by: i) copying the
elite solutions, ensuring monotonically improvement; ii) randomly
generating a small number of new solutions (mutants), avoiding
local optima; and iii) producing the rest of the population through
mating. Bias is introduced in the selection process as it selects one
parent from the elite group and in the crossover as the probability
of each allele being inherited from the elite parent is larger.

4 RESULTS AND CONCLUSIONS
Computational experiments were carried out on a modified version
of the 10 instances proposed in [2], each having four to eight jobs
and 13 to 21 operations, using the first layout. We adapted these
instances to our problem by incorporation an AS/RS served by a
single shuttle and has two storage racks with 100 storage cells each.
The storage-job allocation was randomly generated (data can be
found in https://fastmanufacturingproject.wordpress.com).

Table 1 reports the optimal makespan (C∗
max ) and corresponding

CPU time (seconds), obtained by solving the MILP model [6]. For

the BRKGA, it reports the best makespan (Cmax ), the optimality gap
(GAP = Cmax−C∗

max
C∗
max

(%)), and the average optimality gap (GAP =
mean−C∗

max
C∗
max

(%)), percentage makespan standard deviation (σ%),
and average CPU time (seconds) over 15 runs.

Table 1: Computational results.

Instances MILP [6] BRKGA

Name M-J-O C∗
max Time Cmax GAP GAP σ% Time

EX11 4-5-13 203 6.5 203 0.00 2.73 5.25 4.96
EX51 4-5-13 207 7.7 207 0.00 4.64 5.60 4.63
EX91 4-5-17 296 7.7 296 0.00 4.80 7.42 7.43
EX41 4-5-19 224 15.8 230 2.68 6.70 6.64 9.85
EX21 4-6-15 270 92.6 270 0.00 3.68 8.79 7.85
EX31 4-6-16 226 116.6 230 1.77 6.19 5.46 8.41
EX61 4-6-18 258 172.8 258 0.00 4.83 6.90 10.57
EX81 4-6-20 247 137.8 251 1.62 6.34 6.97 13.36
EX101 4-6-21 298 221.3 300 0.67 4.38 8.63 16.57
EX71 4-8-19 286* 23219 286 0.00 5.76 7.75 16.61

Average 0.67 5.00 6.94 10.03

M - number of machines, J - number of jobs, and O - and number of operations

Results in Table 1 show that the BRKGA obtains the optimal
Cmax for five of the nine instances with a known optimal one,
always in less time than the MILP. In addition, for the instance EX71
for which the MILP was not able to find an optimal solution within
its 50 000 seconds limit, the BRKGA matched the best knownCmax .
Furthermore, for the remaining instances the gap ranges from 0.67%
to 2.68%. Finally, the average makespan and its standard deviation
over 15 runs range from 2.73% to 6.70% and from 5.25% to 8.79%,
respectively, which allows for inferring the BRKGA robustness.

The proposed BRKGA, in addition to being novel, is capable of
quickly finding good solutions for small-sized problem instances
(its CPU time is always below 17 seconds). This work is particularly
relevant as no heuristic approaches exist for the joint production,
transport, and s/r scheduling in FMSs, which is a NP-hard problem.
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