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ABSTRACT
�e Iterated Prisoner’s Dilemma (IPD) is an intriguing problem

for which the Nash Equilibrium is not globally optimal. Typically

treated as a single-objective problem, a player’s goal is to maximize

their own score. In some work, minimizing the opponent’s score

has been added as an additional objective. We explore the role of

mutual cooperation in IPD player performance. We implement a

genetic algorithm in which the population is divided into four multi-

objective sub-populations: sel�sh, communal, cooperative, and

sel�ess, the last three of which use a measure of mutual cooperation

as an objective. Game play occurs among all members, without

regard to sub-population, while crossover and selection occur only

within a sub-population. Testing is against a population of well-

known strategies and is single objective, using only self score. We

�nd that players evolved to cooperate perform very well, in some

cases dominating the competition. �us, learning to play nicely

with others is a successful strategy for maximizing personal reward.
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1 INTRODUCTION
�e Prisoner’s Dilemma is a two-player game in which each player

chooses whether to implicate (defect) or not implicate (cooperate)

their criminal accomplice. A penalty (symmetrically, reward) is

given depending on the choices of both players. �us, the behavior

of each a�ects the other. In the Iterated Prisoner’s Dilemma (IPD),

the participants play the game repeatedly, utilizing a strategy to

optimize their aggregate scores. �ough populations achieve the
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best aggregate result by acting communally, most research has

focused on players that act only in their own self-interest.

Traditionally, IPD has been treated as a single objective problem,

with players a�empting only to maximize their own score. Mi�al

and Deb [2] implemented a multi-objective version in which each

player a�empts to maximize their own reward and minimize that

of their opponent. �ey showed that players trained in this way

were superior to those trained only to maximize their own reward.

We deviate from the typical game-theoretic assumption that

success requires acting sel�shly. We explore the hypothesis that

cooperation is not only mutually bene�cial but a be�er strategy

for self-success. To this end, we create a population in which each

player has one of four pairs of non-contradicting objectives. �e

population is initialized with an equal number of players with

each objective pair and trained against each other or a benchmark

population. We then evaluate all players in a tournament against

the benchmark population. Independent of the objectives used

during training, players are evaluated solely on self-score.

�e central question is this: Does learning to cooperate bene�t

individuals more than learning to be sel�sh? We �nd that players

with cooperative objectives outperform their sel�sh counterparts,

even when evaluated by self-score. �at is, players trained to play

to the bene�t of others win tournaments in which the only metric

is personal reward.

2 OUR MODEL
We implement a multi-objective genetic algorithm inspired by that

of Mi�al and Deb [2]. An important di�erence in our algorithm is

that each individual is assigned one of four distinct objective pairs.

Selfish players have the same objectives as those in the top-

scoring algorithm implemented by Mi�al and Deb [2]. Communal
players a�empt to maximize their personal score and maximize

their opponent’s score. �e remaining two objective pairs explicitly

rewardmutual cooperation: games in which both players cooperate.

�is is achieved via an objective that calculates the fraction of

games in which both players choose cooperation. �ese two pairs

are called Cooperative and Selfless.
�e genome for each player consists of a 70-bit string: a 64-bit

decision string, followed by a 6-bit history string. Additionally, each
player contains an integer in [0..3] indicating its objective pair,

though this is not part of the genome. �e history string stores the

results of the last three games played and serves as an index into

the decision string, determining the player’s next decision.

In each generation, play consists of a round-robin tournament in

which every pair of players play 150 consecutive games. A�er each

game, players learn the outcome and update their history strings so

that they store the outcomes of the three previous games. �us, in

any game, if the decimal representation of a player’s history string
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Figure 1: Structure of our experiments

is i , its decision in that game is given by the ith bit of its decision

string, where 0 indicates cooperation and 1 indicates defection.

3 EXPERIMENTS AND RESULTS
Each match in the tournament consists of 150 prisoner’s dilemma

rounds. �e population size is 120, divided evenly across the four

sub-populations. We use single-point crossover with probability

0.9. Each child is thenmutated by �ipping bits with probability 1/70,

so that the expected number of bits �ipped per player is 1. Both the

decision string and the history string are evolved. Selection is via

NSGA-II [1]. �e GA is run for 2500 generations.

A�er each training trial, the top 20 members of each objective

pair are logged. �ese members are combined across 32 trials and

sorted with objective pair as the primary key and self score as the

secondary key. �e top 160 members for each objective pair are

used to create a candidate pool for use during testing.

Testing is via a round-robin tournament.m members of each of

the 4 evolved types are chosen at random, from the candidate pool

described above, form ∈ {5, 10, 20}. �e population also includes

m members for each benchmark strategy. �us, the population

size is 21m. Each member plays 150 rounds of prisoner’s dilemma

against 20m players, as they do not play against members of their

own type. �e sole criterion for evaluating the players is self score.

Our experiments are depicted in Figure 1.

Our primary goal in this project is to investigate if players trained

to value cooperation can be competitive when playing IPD against

a population of standard players, even when cooperation is not

used as a metric of success in the competition.

A test consists of 100 round-robin tournaments. Figure 2 shows

representative results. In this stacked bar graph, each player type

is depicted using a color/pa�ern pair. �e magnitude of a player’s

color/pa�ern in the ith bar indicates the proportion of the 100

tournaments in which that player type ranked in ith place based

on average score of allm players of that type.

In testing of players trained within the evolving population, we

�nd that our Cooperative players (maximizing personal score and

cooperation score) win every tournament. Other top �nishers are

our Communal players, Tit-for-Tat, and our Sel�ess players. �e

success of Sel�ess players is notable. �eir optimization objectives

during training are to maximize opponent score and cooperation,

yet they perform well in a tournament in which the only metric

is personal score. Sel�sh players occasionally break into the top 5

�nishers, but are typically the lowest-scoring of our players.

For players trained against the Axelrod population and Gradual

strategy (as in the graph), we �nd a less decisive ranking. As before,

Cooperative and Communal players are consistently among the top

Figure 2: Results for 100 tournaments. Within a toruna-
ment, scores for players of each strategy are averaged and
used to determine �nishing position for that strategy.

�nishers. A key di�erence from tests of population-trained players

is that our Axelrod-trained Sel�sh player �nishes much higher. In

fact, these players win a majority of the tournaments though our

cooperative players dominate based on average score.

4 CONCLUSION
We �nd that cooperation does indeed pay o�: when players are

trained to cooperate, they tend to outperform sel�sh players in

a round-robin Iterated Prisoner’s Dilemma tournament in which

the measure of success is personal score. We compare the perfor-

mance of 21 di�erent strategies for IPD and observe the success

of cooperative players in such se�ings. Even when trained with

inclusion of an always defecting sub-population, we still observe

the success of cooperative players, suggesting robustness of our

players’ strategies. Our results support the traditional strength of

sel�sh players and introduce cooperative strategies that outperform

these sel�sh strategies. Perhaps these results suggest the viability

of cooperative behaviors in other domains, such as International

Environmental Agreements and Nuclear Stando�s. In future work,

we hope to extend our model to such games.
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