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ABSTRACT 
Random drift particle swarm optimization (RDPSO) is a swarm 
intelligence algorithm inspired by the trajectory analysis of the 
canonical particle swarm optimization (PSO) and the free electron 
model in metal conductors placed in an external electric field. 
However, the RDPSO algorithm may easily encounter premature 
convergence when solving multimodal optimization problems. In 
order to deal with this issue, a new collaborative diversity control 
strategy for RDPSO is presented in this paper. Within this strategy, 
two kinds of diversity measures are used and changed in a 
collaborative manner to make the evolving process of the RDPSO 
controllable, so that premature convergence can be avoided and a 
final good solution can be found. Experimental results, when 
comparing with the canonical RDPSO and the canonical RDPSO 
using ring neighborhood topology, show that the proposed 
collaborative diversity control strategy can significantly improve 
the performance of the RDPSO algorithm for multimodal 
optimization problems in most cases. 
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1 INTRODUCTION 
The random drift particle swarm optimization (RDPSO) 

algorithm was proposed based on the basic theory of particle swarm 
optimization (PSO) [1], along with the trajectory analysis of its 
canonical version [2] and the analogy with the free electron model 
in metal conductors placed in an external electric field [3]. The 
algorithm is illustrated in detail in [4]. However, some limitation of 
the RDPSO algorithm is its ability to escape from local optima in 
the search process, especially in multimodal optimization problems. 
To deal with this issue, a novel strategy called collaborative 
diversity control (CDC) strategy for RDPSO is introduced in this 
paper. Using the CEC-2013 benchmark, the RDPSO algorithm with 
CDC strategy is compared with the canonical RDPSO ( 𝛼  is 
decreasing linearly from 0.9 to 0.3 with 𝛽 = 1.45), and canonical 
RDPSO using ring neighborhood topology, to verify the 
effectiveness of the proposed strategy. 

2 COLLABORATIVE DIVERSITY CONTROL 
In order to quantify the distribution of the particle swarm, the 
definition of swarm diversity [5] is used in this paper: 
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where 𝐴 is the diagonal length of the search space, 𝑀 is the number 
of individuals in the swarm, and 𝑁  is the dimensions of each 
individual. 𝑋3,+ = (𝑋3,+- ,𝑋3,+: ,⋯ , 𝑋3,+; ) is the current position vector 
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of particle 𝑖  at the 𝑛FG  iteration, and the mean value of all 
individuals’ 𝑗FG dimension is 𝑋+

78888. 
In this paper, the diversity values of two populations are used: 

𝐷(𝑋+) and 𝐷(𝑃+), which are the diversity values of all particles’ 
current positions and personal best positions, respectively. 
Basically, the global and local search ability of the RDPSO 
algorithm is related to the relationship between these two swarm 
diversities. Based on this, the Collaborative Diversity Control 
strategy for RDPSO is proposed. By comparing 𝐷(𝑋+) and 𝐷(𝑃+) 
in each iteration, several sub-strategies are observed, which are 
listed below: 

A. The baseline for 𝐷(𝑃+). Firstly, a decreasing baseline of 
𝐷(𝑃+) is set, using a polynomial form in terms of the iteration 
number, which is expressed as: 

𝐵3 = (1− 𝑛	/𝑛KLM)N ∗ (𝐵+,PFLQF − 𝐵+,R+S)+𝐵+,R+S	 (2) 

𝐵+,R+S = 𝑒𝑟𝑎𝑡𝑖𝑜 ∗ 𝐵+,PFLQF		 (3) 

where 𝑛 represents the 𝑛FG iteration of the algorithm and 𝑛KLM is 
the maximum number of iterations. 𝑐  is a constant which 
determines the decline rate of the baseline. 𝑒𝑟𝑎𝑡𝑖𝑜 determines the 
particles’ final searching area. 𝐵+,PFLQF is set to 𝐷(𝑃-), and 𝐵+,R+S 
is set to a certain ratio multiplied by 𝐵+,PFLQF. Empirically, 𝑐 = 7 
and 𝑒𝑟𝑎𝑡𝑖𝑜 = 1 × 10^_ are set, which can give the CDC strategy a 
good performance on multimodal optimization problems. 

B. Divergence of particles. When 𝐷(𝑋+) and 𝐷(𝑃+) are both 
lower than the current value of the baseline, the particles’ search 
area should be too small to search globally. Therefore, in this sub-
strategy, the value of 𝛼  increases with the decline of 𝐷(𝑋+) 
according to equation (4), while 𝛽 = 1.45 is kept constant, to make 
the particles diverge, enlarging the search area. 

𝛼 = 𝛼` 𝐷𝑟(𝑋+)⁄ , 𝐷𝑟(𝑋+) = 𝐷(𝑋+)/𝐷(𝑋-)			 (4) 

where 𝐷𝑟(𝑋+) shows how small the particles’ diversity is. 𝛼` is set 
to 0.9, making particles diverge moderately at the beginning. 

C. Global search of particles. When 𝐷(𝑋+) is higher than the 
baseline, along with 𝐷(𝑃+) still lower than the baseline, we set 𝛼 =
0.9 and 𝛽 = 1.45 to let the algorithm search globally, considering 
the relatively large distance between 𝐷(𝑋+) and 𝐷(𝑃+). 

D. Accelerated convergence of particles. Finally, if 𝐷(𝑃+) is 
larger than the value of the baseline, 𝛼  and 𝛽  is set to decrease 
linearly from 0.9 to 0.3 and 1.45 to 1.05 in term of the iteration 
number, respectively, to accelerate the convergence process, 
making the particles search more locally as necessary. 

3 RESULTS AND DISCUSSION 
The multimodal functions 𝐹d  to 𝐹:`  from the CEC-2013 
benchmark suite [6] are employed to evaluate the effectiveness of 
the RDPSO-CDC algorithm, compared with the canonical RDPSO 
and canonical RDPSO using ring neighborhood topology (RDPSO-
Ring), as the ring neighborhood topology is basically designed for 
multimodal optimization problems [7]. The dimension of each 
tested benchmark function is 30, and the max iterations is set to 
3 × 10_, using 100 particles. Each function is optimized 51 times. 
The size of the ring neighborhood topology is set to 3. Table 1 

records the average final fitness values and the best final fitness 
values for each algorithm. 

In Table 1, the better results among RDPSO-CDC and RDPSO 
are bold. For the mean values and the best values, RDPSO-CDC 
gets better results in almost every function only except the mean 
value in 𝐹-` and the best value in 𝐹d. Secondly, the result with an 
underline in each function is the better one among RDPSO-CDC 
and RDPSO-Ring. Only in 𝐹d, 𝐹-:, 𝐹-f, 𝐹-g for the mean values, 
and 𝐹d for the best values, RDPSO-Ring is the winner, while in all 
the other functions RDPSO-CDC is the better one. Thus, it can be 
concluded that for the RDPSO algorithm, CDC strategy can 
significantly improve the performance of dealing with multimodal 
problems, and its effectiveness is better than RDPSO-Ring. 

Table 1: Mean and Best Values for Three Algorithms  

 
RDPSO 

RDPSO 
-CDC 

RDPSO 
-Ring 

RDPSO 
RDPSO 
-CDC 

RDPSO 
-Ring 

 Mean Value Best Value 
F6 3.59E+01 2.56E+01 7.86E+00 1.05E+01 1.46E+01 1.79E-01 
F7 3.81E+00 2.96E+00 5.53E+00 3.86E-01 1.96E-01 1.66E+00 
F8 2.09E+01 2.08E+01 2.09E+01 2.07E+01 2.07E+01 2.07E+01 
F9 1.10E+01 1.08E+01 1.24E+01 4.84E+00 4.17E+00 7.87E+00 
F10 3.03E-02 4.47E-02 4.66E-02 8.10E-03 7.40E-03 9.86E-03 
F11 1.01E+01 1.02E+00 1.11E+01 3.98E+00 2.76E-10 5.97E+00 
F12 4.58E+01 3.08E+01 2.87E+01 1.31E+01 1.20E+01 1.99E+01 
F13 8.19E+01 6.31E+01 6.08E+01 3.43E+01 1.50E+01 3.62E+01 
F14 8.87E+02 3.84E+02 7.42E+02 2.71E+02 2.52E+01 2.80E+02 
F15 6.12E+03 4.24E+03 3.98E+03 3.04E+03 1.71E+03 1.96E+03 
F16 1.99E+00 1.97E+00 2.02E+00 1.40E+00 1.05E+00 1.20E+00 
F17 4.78E+01 3.50E+01 5.60E+01 3.58E+01 3.06E+01 4.77E+01 
F18 1.76E+02 1.35E+02 1.54E+02 1.52E+02 5.91E+01 1.05E+02 
F19 2.63E+00 1.50E+00 2.16E+00 1.57E+00 1.01E+00 1.58E+00 
F20 1.34E+01 9.68E+00 1.02E+01 8.12E+00 7.75E+00 9.24E+00 

4 CONCLUSIONS 
In this paper, we proposed a collaborative diversity control strategy 
for the RDPSO algorithm, in order to avoid local optima when 
using RDPSO for multimodal optimization problems. By 
comparing the RDPSO-CDC algorithm with canonical RDPSO and 
the ring neighborhood topology, the experimental results 
significantly indicate the effectiveness of the CDC strategy. 
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