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ABSTRACT
This paper concerns optimizing counter-epidemic strategies select-
ing actions which differ with respect to the cost, damage to the
animal population and the potential of stopping the disease. Im-
portant factors that have to be taken into account are the time it
takes for the vaccine to become effective and the dynamic of the
epidemic. This paper focuses on optimizing control strategies rather
than individual decisions in the case of a particular epidemic. An
evolutionary optimizer using simulations for solution evaluation is
run in order to gather training data. Based on the training data a re-
gression model is built which can subsequently be used to improve
the results obtained when solving new instances of the proposed
problem. Experimental results show, that the model can be used to
transfer knowledge from previously solved instances to new ones.
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1 INTRODUCTION
In this paper an optimization problem is studied in a scenario in
which an epidemic is spreading in a livestock population. The
spreading of the disease is nondeterministic with the probabil-
ity of infection dependent on distances in a similar way as in the
Foot-and-Mouth Disease (FMD) spreading model [1]. The goal is
to optimize epidemic control strategies, so the optimizer adjusts
parameters which are used for making decisions while the epidemic
is spreading, instead of selecting a set of actions aimed at partic-
ular individuals in the population. In this paper the epidemic is
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Figure 1: An example of theworking of the epidemic control
strategy with Θcul = 0.05 and Θvac = 0.2.

simulated in a population randomly distributed on a [0, 1] × [0, 1]
square using a preferential placement that results in some areas
more densely and some less densely populated. In each time step,
for each two individuals separated by a distance d , one infected and
the other susceptible, the disease can be transmitted with the proba-
bility P = s0 · f0,σT (d), where s0 is the susceptibility parameter and
f0,σT is the probability density function of a Gaussian distribution
with a zero mean and a standard deviation σT .

In this paper the following epidemic control strategy is defined,
which uses threshold parameters Θcul and Θvac . In each time step,
for each susceptible individual the minimum distance to an infected
individual dmin is calculated. If dmin <= Θcul the culling action is
performed and if Θcul < dmin <= Θvac vaccination is performed.
The effectiveness of vaccination is zero in the time step when it was
administered and increases by ∆v in subsequent time steps until
the individual reaches full immunity. An example of the working
of the epidemic control strategy with Θcul = 0.05 and Θvac = 0.2
is shown in Figure 1. Infected individuals are shown as large red
dots, the individuals to which culling was applied as black dots and
vaccinated individuals as blue dots. Gray dots represent susceptible,
but as of yet, uninfected individuals.

2 PROPOSED METHOD
The method studied in this paper followed the training-testing
scheme used, among others, in machine learning. For each triple of
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values s0 ∈ {0.01, 0.02, . . . , 0.05}, σT ∈ {0.01, 0.02, . . . , 0.05} and
∆v ∈ {0.1, 0.2, . . . , 1.0} (250 triples in total) the Standard Genetic
Algorithm (SGA) optimized the values of ⟨Θcul ,Θvac ⟩ parameters.
Using the optimized values a regression modelM was trained, con-
sisting of two polynomials in which s0, σT and ∆v were variables
and one polynomial approximated Θcul and the other Θvac . For
new instances of the optimization problem the regression model
M was used to improve the solutions using two methods:

Prediction only: For the parameters s0, σT and ∆v the model
M predicted Θ∗

cul and Θ∗
vac and no further optimization was per-

formed. This approach is very fast, but can be expected to be inferior
to the evolutionary optimizer in terms of solutions quality.

Prediction + optimization: For the parameters s0, σT and ∆v
the modelM produced predicted values Θ∗

cul and Θ∗
vac and pop-

ulation seeding was used in the following manner. Half of the
specimens were replaced by the offspring generated by applying
the Simulated Binary Crossover (SBX) [2] to a given specimen and
the predicted values ⟨Θ∗

cul ,Θ
∗
vac ⟩. Additionally, the genotype of

one specimen was replaced by the predicted values ⟨Θ∗
cul ,Θ

∗
vac ⟩.

3 EXPERIMENTS AND RESULTS
In the experiments the twomethods for using information produced
by the regression model presented in Section 2 were tested. For tests
two sets of 30 instances with Np = 2000 points were generated, one
used as a training set and the other as a testing set.

To obtain training data the values of thresholds Θcul and Θvac
have to be optimized for various triples of parameters s0, σT and
∆v . The difficulty in the optimization problem lies with complex
simulations needed to evaluate solutions. In order to be able to
perform optimization for 250 different triples of parameters (cf. Sec-
tion 2) the size of the population was set to Npop = 20 solutions
and the number of generations was set to Nдen = 20. Crossover
probability was set to Pcross = 1.0 and mutation probability to
Pmut = 1/Np = 0.0005. Simulated Binary Crossover (SBX) [2] was
used as the crossover operator with the distribution index ηc = 20.
For mutation the Polynomial Mutation [3] operator was used with
the distribution index ηm = 20. Using optimized values of Θcul
and Θvac as target values the regression modelM was trained. For
Θcul a polynomial of degree 7 was obtained with the Mean Average
Percentage Error (MAPE) equal 22.08%. For Θvac a polynomial of
degree 5 was obtained with the MAPE equal 18.99%.

In the testing phase the trained regression model was used to
predict values of the Θcul and Θvac thresholds based on the values
of s0, σT and ∆v parameters. The two approaches described in
Section 2 were tested: prediction only and prediction + optimization.

Prediction only: The median cost C(r eд) was calculated on
30 test problem instances using a control strategy in which the
regression model M was used to generate predicted thresholds
⟨Θ∗

cul ,Θ
∗
vac ⟩ based on the parameters ⟨s0,σT ,∆v ⟩. For comparison,

the evolutionary algorithm was run, in the exactly same manner as
in the training phase, on these 30 instances and the median result
C(EA) was calculated.

Prediction + optimization: The median C(P+EA) was calcu-
lated from costs obtained using an evolutionary algorithm in which
thresholds predicted by the regression model M were used to aug-
ment the evolutionary optimizer as described in Section 2. For

comparison, the evolutionary algorithm was run (without using
predictions produced by the regression model) on these 30 instances
and the median result C(EA) was calculated.

In both cases the results were compared to see which median
cost was lower (better) and the Wilcoxon statistical test was used
to calculate the p-value of a null hypothesis stating the equality of
medians. Results obtained in the tests were as follows.

Prediction only: Out of 250 medians 209 better (lower) ones
were produced by the evolutionary optimizer, 40 by the regression
model and 1 result was the same for both. However, in none of
the cases the Wilcoxon test produced a low p-value, therefore, the
difference does not seem to be statistically significant. Note, that
while the evolutionary optimizer requires lots of computations, the
regression model produces the prediction virtually instantaneously.

Prediction + optimization: Out of 250 medians 156 better
(lower) ones were produced by the evolutionary optimizer using
the regression model, 93 by the evolutionary optimizer not using
the regression model and 1 result was the same for both. In the
case of 31 results in favour of the evolutionary optimizer using the
regression model the obtained p-value was lower than 0.05. The
same was the case for only 2 results in favour of the evolutionary
optimizer not using the regression model.

4 CONCLUSIONS
In this paper evolutionary optimization of epidemic control strate-
gies was attempted with the focus on building models that could be
reused for new cases of an epidemic. The proposed approach was to
optimize the parameters of a control strategy using an evolutionary
algorithm and use the optimized parameters as training inputs for
a regression model. The trained model could subsequently be used
standalone for predicting correct parameterizations or together
with an evolutionary algorithm to improve its working. In this
paper both approaches were tested: prediction only and prediction
+ optimization. The former produced results which seemed slightly
inferior to those produced by the evolutionary algorithm, but in
a much shorter running time. The latter approach, that is, using the
regression model managed to produce competitive results in many
more cases than evolutionary algorithm alone. Presented results
prove that useful knowledge can be extracted from the optimization
results produced by an evolutionary algorithm.
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