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ABSTRACT
Artificial neural networks typically use backpropagation methods

for the optimization of weights. In this paper, we aim at investigat-

ing the potential of applying the so-called evolutionary strategies

(ESs) on the weight optimization task. Three commonly used ESs

are tested on a multilayer feedforward network, trained on the well-

known MNIST data set. The performance is compared to the Adam

algorithm, in which the result shows that although the (1 + 1)-ES

exhibits a higher convergence rate in the early stage of the training,

it quickly gets stagnated and thus Adam still outperforms ESs at

the final stage of the training.
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1 INTRODUCTION
In the past, Evolutionary Algorithms were already suggested as

a means to optimize the weights and the structure of multilayer

neural networks [3]. However, this had little effect on the practical

use of a neural network and especially deep learning methods. Mod-

ern libraries such as e.g., keras do not even contain evolutionary

optimization algorithms. Recently, first results on optimizing the
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weights of deep convolutional networks using Evolution Strate-

gies [4] or Genetic Algorithms [5] also showed promising results

and even classical evolution strategies could show competitive

performance on challenging benchmarks, such as the Atari-game

challenge [7]. This paper is a first step towards filling this gap of

knowledge and investigating whether evolution strategies can be

competitive to or even better than state-of-the-art weight optimiza-

tion algorithms such as Adam. Towards this goal, we select three

variants of evolution strategies, namely the (1+ 1)-ES with 1/5 suc-

cess rule, the (µ +, λ)-MSC-ES, and the (µ, λ)-sep-CMA-ES, which

are tested on the well-known MNIST data set.

2 CANDIDATE EVOLUTION STRATEGIES
This paper focuses on evolution strategies as a subclass of evolution-

ary algorithms that is standard for continuous optimization, within

which three commonly used of evolution strategies are considered

for the neural network training: 1) The (1 + 1)-ES with 1/5 suc-
cess rule [1] is the simplest ES algorithm that employs an isotropic

multivariate normal distribution to generate the mutation. The

global step-size is controlled by the well-known 1/5 success rule.

2) The (µ +, λ)-self-adaptive step-size control (MSC) ES [1] is a

population-based ES algorithm, in which λ candidate individuals

are generated using the isotropic multivariate normal distribution.

The global step-size is controlled in a self-adaptive manner. 3) The

(µ, λ)-sep-CMA-ES [6] (also called separable-CMA-ES) is the sim-

plified variant of the well-known CMA-ES [2].

3 EXPERIMENT AND CONCLUSION
In the experiments reported here, a neural network is constructed

to handle the well-known MNIST data set. The network structure

is specified as follows: 1) Input: flattened mnist image of size

784 = 28×28. 2) First layer: 200 linear units with biases. 3) Second
layer: 100 linear units with biases. 4) Third layer: 50 softmax

units with biases. 5) Output layer: 10 softmax units with biases.

6) Loss function: the so-called cross entropy is chosen as the

objective function for ESs. Note that, there are 182660 parameters

in this larger neural network. In order to determine the proper batch

size and evaluation budget for the ES, several different batch sizes

({128, 256, 384, 512}) and evaluation budgets ({50, 100, 200, 400}) are

tested, yielding 16 combinations of those. The experiment results

are shown in Fig. 1. It is obvious that the Adam method performs
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(a) Loss function (b) Accuracy

Figure 1: Evolution strategies are compared to the Adam method. The results are averaged over 100 runs where the shaded
bands show the standard deviation.

better in terms of loss function as well as accuracy. Taking a closer

look at the loss values in Fig. 1, the convergence rate of ESs is faster

than that of Adam in the first 10 steps. Then the loss function value

appears to stagnate and even increase in some case (e.g., budget 400

and batch size 128). This phenomenon might be due to the fact that

applying a relatively larger evaluation budget (e.g., 400) to an elitist

ES algorithm can result in a potential overfitting to the current

batch of data. In general, we arrive at the following conclusions: 1)

A large evaluation budget leads to fast initial convergence of the loss

function. The converged loss function weights, however, would

quickly overfit the subsequent training batches. 2) A relatively

large batch size should be taken together in combination with ES

algorithms, to alleviate the overfitting issue as mentioned above.
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