
Black-Box Complexity of the Binary Value Function
Nina Bulanova
ITMO University

Saint Petersburg, Russia
ninasbulanova@gmail.com

Maxim Buzdalov
ITMO University

Saint Petersburg, Russia
mbuzdalov@gmail.com

ABSTRACT

The binary value function, or BinVal, has appeared in several
studies in theory of evolutionary computation as one of the extreme
examples of linear pseudo-Boolean functions. Its unbiased black-
box complexity was previously shown to be at most ⌈log2 n⌉ + 2,
where n is the problem size.

We augment it with an upper bound of log2 n+2.42141558−o(1),
which is more precise for roughly a half of values of n. We also
present a lower bound of log2 n + 1.1186406 − o(1) and provide an
algorithm to compute the exact black-box complexity of BinVal
for a given n.

CCS CONCEPTS

• Theory of computation → Theory of randomized search

heuristics.

KEYWORDS

Unbiased black-box complexity, linear functions, BinVal.
ACM Reference Format:

Nina Bulanova and Maxim Buzdalov. 2019. Black-Box Complexity of the
Binary Value Function. In Genetic and Evolutionary Computation Conference

Companion (GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Re-

public. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.
3322070

1 INTRODUCTION AND DEFINITIONS

In the current state of theory of randomized search heuristics there
are two major building blocks that augment each other: runtime
analysis and black-box complexity theory. The gaps between their
results are an important source of difficult questions and new in-
spiring results.

The black-box complexity is defined for a class of optimization
problems (or functions) F and a class of algorithmsX. We denote by
EA (f) the expected running time of an algorithm A on a function
f , that is, the expected number of queries to that function until its
optimum is queried for the first time. The black-box complexity of
a class of functions F for a class of algorithms X is [3]:

BBCX(F) = inf
A∈X

sup
f ∈F

EA (f).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3322070

In the unrestricted black-box complexity, as defined in [4], the set
X includes all possible black-box algorithms. To get more realistic
complexities, the unbiased black-box complexity was introduced
in [5] for pseudo-Boolean functions by restricting the possible
operations to those typically performed by evolutionary algorithms,
and [6] extends unbiasedness to arbitrary functions and shows
that, with a proper definition, the unbiased black-box complexity
coincides with the unrestricted one. The works [1, 3] study a further
restriction, called the k-ary unbiased black-box complexity, which
allows using only k-ary unbiased variation operators.

A k-ary variation operator [3] R produces a search point y from
the k search points x1, . . . ,xk with probability PR (y | x1, . . . ,xk).
The operator R is unbiased [5] if the following holds for all search
points x1, . . . ,xk ,y, z and all permutations π of size n:

PR (y | x1, . . . ,xk) = PR (y ⊕ z | x1 ⊕ z, . . . ,xk ⊕ z),

PR (y | x1, . . . ,xk) = PR (π (y) | π (x1), . . . ,π (xk)),

where a ⊕ b is the bitwise exclusive-or operation and π (a) is an
application of permutation π to bit string a.

One result from [1] is that the binary unbiased black-box com-
plexity is O(n) for OneMax, supported by an algorithm with the
expected runtime of 2n. Our conjecture is that the binary unbiased
black-box complexity is linear not only for OneMax, but for any
linear function, as the mentioned algorithm works on linear func-
tions without any changes. The class of linear functions includes
the BinVal function, a linear function with weights equal to powers
of two, which is defined on bit strings of length n as follows [2]:

BinValz,π (x) =
n∑
i=1

2i−1 · [zi = xπ (i)],

where z ∈ {0; 1}n is the (unknown) optimum, and π is a hidden
permutation of size n that defines which weights are given to which
indices. This function has a single global maximum at x = z with
the corresponding function value of 2n − 1. In [2], its black-box
complexity was proven to be at most ⌈log2 n⌉ + 2.

We feel that BinVal is a promising tool for analyzing k-ary
unbiased black-box complexities. For this reason, in this paper we
prove quite sharp bounds on its unbiased black-box complexity.
Our upper bound of log2 n + 2.42141558 − o(1) complements the
existing bound and is more precise for roughly a half of possible n.
We also prove a lower bound of log2 n + 1.1186406 − o(1) for the
first time. Finally, we present the algorithm that evaluates the exact
complexity value for any given n.

This research was supported by the Russian Scientific Founda-
tion, agreement No. 17-71-20178. This paper omits all proofs for
space reasons; the larger version of this paper with the missing
proofs and more detailed explanations is available at arXiv1.

1https://arxiv.org/abs/1904.04867

423

https://doi.org/10.1145/3319619.3322070
https://doi.org/10.1145/3319619.3322070
https://doi.org/10.1145/3319619.3322070
https://arxiv.org/abs/1904.04867

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Nina Bulanova and Maxim Buzdalov

2 BLACK-BOX COMPLEXITY OF BINVAL

We start with sketching an algorithm that works in O(logn). From
the result BinVal(x0) of the initial query x0, which is essentially
a random bit string, we can find the set of weights, at which the
bits are guessed correctly, but not yet their positions. By issuing
the next query x1 where a random half of the bits is flipped and
analyzing BinVal(x1), we get which weights correspond to bits
which coincide in x0 and x1, and which correspond to differing bits,
but nothing more. These halves, or subproblems, are two functions
which are identical to BinVal of a smaller size (except that the
weights are not contiguous powers of two, which changes nothing).

We can optimize the subproblems in parallel by combining the
queries coming from the subproblems into a single query to the
original problem, and splitting an answer into the answers to the
queries of the subproblems. On a next step, each of these two
problems is again subdivided into halves, and this process continues
until the subproblem sizes approach one. Some subproblems will
be solved earlier by occasionally making all bits equal one or zero.
As we know the number of bits guessed right, we may derive an
optimal decision on how to split the problem into two subproblems.

We formalize these ideas using the following set of statements.

Definition 2.1. E(n,d), where 0 ≤ d ≤ n, is the expected time
to optimize a uniformly sampled from problem of size n from the
BinVal class, using an optimal algorithm, where only the first query
has been made and its Hamming distance to the optimum is d .

It is clear that E(n, 0) = 0, since the first query has already queried
the optimum, and E(n,n) = 1, as the optimum is the complete
inverse of the first query, so for n = 1 all possible values are already
known. The following lemma helps to derive all other values.

Lemma 2.2. The following holds for n > 1 and 0 < d < n:

E(n,d) = 1 +min
0<s<n

E(n,d, s), where

E(n,d, s) =

min(s,d)∑
t=max(0,s+d−n)

max(E(s, s − t),E(n − s,d − t)) ·

(s
t
) (n−s
d−t

)(n
d
) .

With this lemma we can constrain E(n,d) quite tight.

Lemma 2.3. For all n > 0 and all 0 < d < n it holds that:

E(n,d) ≤ log2 n + 1 +
⌈log2 n ⌉−1∑

z=0
log2

(
1 + 1

2z

)
.

The sum above is upper-bounded by a constant:
∞∑
z=0

log2
(
1 + 1

2z

)
= 2.2535240379347 . . . ≤ 2.26,

so it follows from Lemma 2.3 that E(n,d) ≤ log2 n + 3.26. We refine
the additive constant by evaluating all E(n,d) by definition for all
n ≤ 2k , computing the maximum differenceDmax = E(n,d)−log2 n,
and adding the following to Dmax:

∞∑
z=k

log2
(
1 + 1

2z

)
.

For k = 10 we found that Dmax < 1.4194631, and the analytical
remainder converges to a number slightly smaller than 0.00195248,
which together proves that E(n,d) ≤ log2 n + 1.42141558.

100 101 102

2

4

6

8

10

12

Problem size n

Fu
nc
tio

n
ev
al
ua
tio

ns

BBC
Lower bound (no o(1) term)
Upper bound (no o(1) term)

Upper bound from [2]

Figure 1: Plots of the exact black-box complexity of BinVal

and of its upper and lower bounds

We also prove the lower bounds.

Lemma 2.4. For all n > 0 and 0 < d < n it holds that:

E(n,d) ≥ log2 n + 0.1186406.

In practice, due to various pessimizations in our proofs, the lower
bound is a little bit better: E(n,d) ≥ log2 + 1

6 for all n and 0 < d < n.
The main result of our paper follows from Lemmas 2.3 and 2.4.

Theorem 2.5. The black-box complexity of BinVal is:

at most log2 n + 2.42141558 − Θ(log2 n/2
n),

at least log2 n + 1.1186406 − Θ(log2 n/2
n).

3 CONCLUSION

We proved quite sharp bounds on the black-box complexity of the
binary value function, which is log2 n + Θ(1), where the constants
that defineΘ(1)were also found and their difference is less than 1.4.
The upper bound complements the existing upper bound from [2],
as it is more precise for roughly a half of problem sizes (see Fig. 1 for
visual comparison), and the lower bound was proven for the first
time. We hope that this result will be useful to close the existing
gaps in k-ary unbiased black-box complexities.

REFERENCES

[1] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus
Wagner, and Carola Winzen. 2011. Faster black-box algorithms through higher
arity operators. In Proceedings of Foundations of Genetic Algorithms. 163–172.

[2] Benjamin Doerr and Carola Winzen. 2014. Ranking-Based Black-Box Complexity.
Algorithmica 68, 3 (2014), 571–609.

[3] Benjamin Doerr and Carola Winzen. 2014. Reducing the arity in unbiased black-
box complexity. Theoretical Computer Science 545 (2014), 108–121.

[4] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2006. Upper and Lower Bounds
for Randomized Search Heuristics in Black-Box Optimization. Theory of Computing

Systems 39, 4 (2006), 525–544.
[5] Per Kristian Lehre and CarstenWitt. 2012. Black-box Search by Unbiased Variation.

Algorithmica 64 (2012), 623–642.
[6] Jonathan Rowe and Michael Vose. 2011. Unbiased Black Box Search Algorithms. In

Proceedings of Genetic and Evolutionary Computation Conference. ACM, 2035–2042.

424

	Abstract
	1 Introduction and Definitions
	2 Black-Box Complexity of BinVal
	3 Conclusion
	References

