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ABSTRACT
In black-box optimization scenarios, researchers have no control
over the fitness functions, and hence genetic algorithms (GAs) are
usually compared by the number of function evaluations. Com-
monly used statistics include arithmetic mean, median, and stan-
dard deviation. However, these statistics can be misleading. For
example, when there exist unsolvable instances within limited time,
median simply ignores those instances, and arithmetic mean is not
applicable at all. In this paper, we propose comparison methods
from a practical point of view. Specifically, we propose three use
cases which cover most of the situations that GA practitioners may
encounter. Among these three use cases, two of them are matchups,
which requires a pair of GAs to be compared with each other, while
the other provides as a standalone performance indicator of GAs.
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1 INTRODUCTION
Genetic algorithms (GA) [3, 6] are one of the most important opti-
mization techniques since many real-world problems fit into the
black-box optimization scenarios. Evaluating the performance of
GAs has always been crucial when GA researchers develop a new
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algorithm. Since users of GAs usually have no control over the
black-box function, the evaluation time of the function is consid-
ered long. As a result, the number of function evaluation (NFE)
is the most commonly used performance metric when comparing
different GAs [2, 4, 7]. However, NFE statistics, such as its average,
median and standard deviation (stdev), cannot fully represent the
performance of a GA. When GAs fail in solving some instances, GA
researchers usually consider the NFE required on failed instances
as a large value or infinity. In such cases, the NFE value of unsolved
instances becomes an obstacle in creating an indicative metric. A
formulated, fair comparison based on NFE between parameterized
algorithms is proposed in [1]. However, the work does not solve
the problem unsolved instances create. Also, it does not cover pa-
rameterless GAs, whose usages are more common in real-world
applications.

In this regard, use cases of GAs need to be considered in com-
paring the performance of GAs. We conclude different scenarios
users may encounter and compare GAs based on them. Each of the
use cases focuses a certain aspect of GAs and should be chosen to
best fit user needs.

2 PROPOSED USE CASES
2.1 Win-rate
In scenarios that users have plenty of computational resources and
are required to obtain the optimal solutions of tasks, users can
run two GAs to be compared simultaneously. In this case, users
compare GAs based on the proportion of tasks solved most quickly
by them respectively. Based off these scenarios, the Win-rate use
case is designed. Through experiments, we find that comparing P3
[4] and Fast-Efficient-P3 [5] on solving 100 instances of MAX-SAT
in the Win-rate use case gives an opposite result to the result given
by averages of NFE shown in Table 1.

NFE Statistics P3 Fast-Efficient-P3
Average NFE 176k 158k
Stdev NFE 284k 181k
Number of Solved Tasks 55 45

Table 1: Comparing P3 and Fast-Efficient-P3 on solving
MAX-SAT problem in the Win-rate use case

2.2 Online Algorithm
When computational resources (totalNFE) are limited and users are
required to obtain the optimal solutions of tasks, users sometimes
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(a) P3 (b) Fast-Efficient-P3

Figure 1: CDF and Expected Solved Instances of P3 and Fast-
Efficient-3

need to give up some difficult tasks and focus on others. A reason-
able strategy is to decide a give-up threshold of NFE to optimize
the number of solved tasks.

With the CDF model, we can find the optimal threshold θ∗ of
NFE that maximizes the expected number of instances using one
NFE solves, denoted by ind :

θ∗ = argmax
θ

ind = argmax
θ

F (θ )

(1 − F (θ )) × θ +
∫ θ
0 x f (x)dx

(1)

By definition, the expected number of solved tasks equals to ind ×

totalNFE.
Through experiments, we find that comparing P3 and Fast-Efficient-

P3 on solving 100 instances of MAX-SAT based on the Online Algo-
rithm use case shows the opposite result to that given by comparing
with average NFE.

For both algorithms, the CDF models are shown in Figure 1a
and Figure 1b as the blue triangular curves. The orange star curves
show the expected numbers of problems solved in a fixed number
of NFE using the threshold on the x-axis. The optimal threshold and
the re-simulated number of solved tasks are marked as the green
vertical line.

NFE Statistics P3 Fast-Efficient-P3
Average NFE 176k 158k
Stdev NFE 284k 181k
Optimal Threshold θ∗ 143k 209k
Expected number of solved tasks (1/ind) 7428 7392

Table 2: Comparing P3 and Fast-Efficient-P3 on solving
MAX-SAT problem in the Online Algorithm use case, where
total NFE limit is 109

2.3 Deadline & Baseline
In scenarios that users have a deadline, which is represented by a
limited number of NFE, the optimal solution may not be necessary
and only a tolerable solution is required. In such cases, the proba-
bility of reaching the baseline before the deadline is all that users
care about. We generate loose, moderate, and strict requirements
based on the averages and stdevs of NFE required to solve it with
the two GAs. Based off the three criteria, the Deadline & Baseline
use case is designed.

In practice, we consider a situation where the two versions of
DSMGA-II, DSMGA-II and DSMGA-II-TwoEdge [2, 7], are solving
100 instances NK landscape problem [8] with step size 3. In the

three different deadline and baseline settings, two of them gives an
inverse result with respect to the average and stdev indicators.

Since the deadlines and baselines are determined by each in-
stance, we show only the NFE and fitness function distributions
of the first instance of NK landscape problem with step size 3 as
below.

Prob of reaching baseline DSMGA-II Two Edge DSMGA-II
Average NFE 556k 548k
Stdev NFE 250k 242k
Loose Requirement 89.15% 89.51%
Moderate Requirement 78.89% 76.64%
Strict Requirement 57.49% 50.77%

Table 3: Comparing DSMGA-II and DSMGA-II-TwoEdge on
solving NK-3, and DSMGA-II-TwoEdge is preferred in two of
the three requirements

We rerun all 100 instances, each with the three requirements,
and in Table 3, DSMGA-II-TwoEdge is preferred in Moderate and
Strict requirements.

3 CONCLUSION
In this work, we proposed new frameworks for comparing GAs
based on different settings to mitigate the bias of directly using
NFE statistics for comparison. This gives a more meaningful result
in the practical sense.

When choosing the most suitable GAs, users should consider
their real use cases and find the best NFE distributions to fit their
needs instead of choosingGAswith best NFE statistics. To the extent
of our knowledge, this is the first ever work that formally addresses
the distributions of NFEs and discusses different aspects of them
under different scenarios. Three use cases were considered and
simulated in this paper: Win-rate, Online Algorithm, and Deadline
& Baseline.
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