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ABSTRACT

We investigate the effectiveness of a set of evolutionary algorithms
on noisy combinatorial optimisation problems. Despite some of
these having polynomial runtime bounds for noisy ONEMAX, we
find that in practice they are not able to solve this problem in
reasonable time, with the exception of the Paired Crossover EA, and
UMDA. We further study the performance of these two algorithms
on noisy versions of SUBSETSUM and KNAPSACK.
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1 INTRODUCTION

Optimisation in the presence of noise has received considerable
treatment in the case of continuous optimisation, and a large num-
ber of heuristic approaches have been explored [5, 8]. However,
until recently, there were fewer studies for combinatorial problems
in the context of noise (see [2] for a survey).

In this paper, we are interested in whether any of the algorithms
with good theoretical runtimes for noisy ONEMAX would be capa-
ble of solving combinatorial problems with added noise in practice.
We proceed in two stages. First we will experimentally compare a
collection of algorithms on noisy ONEMAX and noisy LINEAR prob-
lems, to see which can find solutions within a reasonable amount
of time (to be defined below). Second, we will take those algorithms
which pass this first test, and see how well they handle noise in
two combinatorial problems: SUBSETSUM and KNAPSACK.
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Table 1: Noisy problems

otherwise.

Problem ‘ Noisy variant
ONEMAX(x) ‘ I xi+N(0,0)
WEIGHTEDLINEAR(X) ‘ x-w+ N(0,0)
SUBSETSUM(X) ‘ |6 —x-w|+ N(,0)
x-p+ N(0,0) ifx -w<6,;
KnapsackVi(x) ‘ 0—x-w+N(0,0) otherwise.
KNAPSACKV2(x) ‘ x -p + N(0,0) ifx-w+N(0,0)<0;

0—x-w+N(0,0)

Table 2: Algorithms studied

Algorithm
(1+1)-EA

Parameter settings

mutation rate = 1/n

x=1,1=c%logn
K = 702+/n(log n)?

Mutation-Population [3]
Compact GA (cGA) [4]

|
|
|
|
|
B
|

PBIL [1] A =10n,1 = 0.05
UMDA [6] = 20+/nlogn, = 1/2
PCEA [7] u=10y/nlogn

2 EXPERIMENTAL METHOD

The problems studied are defined on a search space of bit strings of
length n. The problems are described in Table 1. We let N(0, o) be a
random number drawn from a normal distribution with mean zero,
and standard deviation o. We denote by w, p and 6 the weights,
profits, and threshold, respectively. We investigate the performance
of a range of evolutionary algorithms, as given in Table 2. The
parameter settings given are in line with recommendations of what
theoretical results we could find in the context of noisy optimisa-
tion.

3 RESULTS

The expected runtime of PCEA has lower theoretical bounds than
the other algorithms, so for the first stage (looking at ONEMAx
and WEIGHTEDLINEAR) we have allowed each algorithm to have
twice the number of fitness evaluations PCEA requires to find the
optimum. For these problems, we set n = 100. The results are
depicted in Figure 1 and 2.
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Figure 1: Comparison of the algorithms while solving the
noisy ONEMax for small noise levels
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Figure 2: Comparison of the algorithms while solving the
noisy WEIGHTEDLINEAR for small noises

Having determined that only UMDA and PCEA are effective
at solving noisy linear problems, the second stage of the exper-
iment is to compare their performance on the noisy versions of
two combinatorial problems (SuBsETSuM and KNaPsAcK). For these
experiments the algorithms are run until the populations converge.
The results are depicted in Figures 3, 4, and 5,
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Figure 3: Comparison of runtime of UMDA (circles) and
PCEA (crosses) while solving instances of the noisy SUBSET-
Sum problem.

4 CONCLUSIONS

We have empirically studied a range of evolutionary algorithms on
a set of noisy problems. Both PCEA and UMDA handle noise well
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Figure 4: Solution quality of UMDA (in circles) and PCEA (in
crosses) while solving instances of noisy KNapPsackV1
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Figure 5: Solution quality of UMDA (circles) and PCEA
(crosses) while solving the NorsyKNAPSACKV2

on both the simple test problems, and on the noisy combinatorial
problems we have studied. The other algorithms have not been able
to cope with noise, within the same function evaluation budget.
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