
On Equivalence of Algorithm’s Implementations: The CMA-ES
Algorithm and Its Five Implementations

Rafał Biedrzycki
Institute of Computer Science, Warsaw University of Technology

Warsaw, Poland
rbiedrzy@elka.pw.edu.pl

ABSTRACT
When a new optimization algorithm is proposed, it is compared
with state-of-the-art methods. That comparison is made using im-
plementations of the algorithms, but names and versions of the
implementations are usually not revealed. This paper compares
five implementations of the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) taken from a trusted source. The compar-
isons were performed using the Comparing Continuous Optimizers
(COCO) platform. The results show that all examined implementa-
tions produce a different outcome. The variation of the results stems
from differences in the auxiliary codes of the implementations and
from implementing an algorithm which is still under development.
It is therefore important to use an appropriate implementation for
experiments. Using a weak implementation can lead to the wrong
conclusions.

CCS CONCEPTS
• Theory of computation→ Evolutionary algorithms;

KEYWORDS
experiments replication, benchmarking, algorithm-implementation
gap, CMA-ES
ACM Reference Format:
Rafał Biedrzycki. 2019. On Equivalence of Algorithm’s Implementations:
The CMA-ES Algorithm and Its Five Implementations. In Genetic and Evolu-
tionary Computation Conference Companion (GECCO ’19 Companion), July
13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3319619.3322011

1 INTRODUCTION
The reproducibility of an experiment is a key aspect of scientific
research. It was noticed [2] that in many articles, experiments
are performed and the results are compared in a way that is not
scientifically correct. The authors of the above work proposed a
set of guidelines that stress the need for providing a description of
the implementation and specification of the algorithm’s parameters
and stopping conditions. Poor experimental research methodology

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3322011

was also criticised in [5]. The authors pointed out that many articles
do not define the scope of claims of the superiority of an introduced
algorithm. It was also noticed that in many papers, the level of
detail does not allow the algorithm to be reimplemented. In [11],
common pitfalls in comparison of the outcome of experiments are
identified. The paper provides guidelines and a checklists which
should be followed before an article is published.

All aforementioned contributions do not describe what to do
when many implementations of the algorithm are available. Usu-
ally, important algorithms have many implementations in popular
languages. For the R language, several implementations of the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [9] and
two implementations of Differential Evolution [10] were compared
in [3]. The results showed that there are differences in the outcome
of different implementations of the same algorithm. The results can
be perceived as not interesting by the optimization community be-
cause R is not a typical optimization environment and the examined
R packages are perceived as not trusted sources of implementations
since they are not made by the authors of the algorithms. The aim
of this paper is to show that differences between implementations
also exist when implementations come from a trusted source.

CMA-ES is used here because it is an important optimization
algorithmwith many high-quality implementations made in several
programming languages by one of its authors.

2 EXPERIMENTAL SETUP
The experiments were performed using version 2.2.1.10 of the Com-
paring Continuous Optimizers (COCO) platform [1] using 24 noise-
less functions (BBOB’2009). COCO provides benchmark functions,
the standard, automatized benchmarking procedure and tools for
processing and visualizing data. It uses the concept of average run-
time (aRT) that is required to achieve a certain error level. The sta-
tistical significance of results is tested with the rank-sum test with
Bonferroni correction. COCO is typically used in unconstrained
searches, but it defines functions that return the bounds of the area
of interest. These functions are used to generate an initial solution
and they are used in COCO’s exemplary experiment files to run
optimizers that perform bound constrained searches. These bounds
are also used in this contribution to better reflect a real-world ap-
plication of the optimization algorithm, where bounds usually stem
from physics. For all implementations being compared, the bud-
get was set to 5 · 107 and initial step size (σ ) was set to 0.3(u − l),
where u is the upper and l is the lower bound of the parameters’
value. If an algorithm stops before exploiting its given budget, it
is restarted. The first starting point is defined by COCO, and the
starting points for restarts are generated by COCO’s function ini-
tial_solution_proposal.

247

https://doi.org/10.1145/3319619.3322011
https://doi.org/10.1145/3319619.3322011


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic R. Biedrzycki

Table 1: The average runtime (aRT) divided by the best aRT
measured during BBOB-2009 at the target error level 10−7 in
5-D as returned by COCO.

Fun. C Java Matlab Python Py. sim. Py. sq. pen.

f1 115 (10) 105 (7) 107 (6) 109 (9) 117 (13) 104 (12)
f2 49 (4) 46 (3) 43 (3) 29 (2) 46 (5) 30 (5)
f3 379 (332) 283 (274) 340 (419) 600 (798) 471 (388) 327 (220)
f4 6982 (6577) 6723 (7326) 9849 (1e4) 5972 (9309) 5681 (1e4) 3874 (4264)
f5 172 (29) 435 (39) 47 (22) 146 (23) 97 (43) 33 (12)
f6 2.6 (0.3) 2.3 (0.4) 2.4 (0.5) 2.4 (0.3) 2.3 (0.2) 2.4 (0.3)
f7 14 (14) 7.1 (8) 10 (11) 2.9 (2) 8.3 (12) 3.0 (4)
f8 12 (7) 10 (1) 12 (6) 13 (3) 10 (1) 9.5 (5)
f9 12 (2) 12 (3) 12 (5) 13 (11) 13 (5) 10 (1)
f10 8.3 (4) 5.3 (0.6) 4.8 (0.6) 4.4 (2) 4.8 (0.6) 3.3 (0.4)
f11 3.0 (1) 2.7 (0.2) 2.5 (0.1) 2.1 (1) 2.6 (0.2) 1.5 (0.1)
f12 6.7 (5) 5.7 (3) 4.2 (3) 6.3 (3) 6.2 (3) 3.4 (2)
f13 3.4 (0.5) 3.6 (0.4) 3.1 (0.4) 2.0 (0.2) 2.9 (0.3) 2.2 (1)
f14 10 (1) 10 (1) 8.3 (0.8) 5.1 (0.4) 9.1 (1) 4.9 (0.8)
f15 20 (10) 20 (27) 43 (44) 22 (36) 24 (26) 34 (28)
f16 25 (12) 5.7 (8) 16 (20) 12 (17) 2.7 (4) 7.9 (6)
f17 39 (52) 22 (17) 50 (42) 42 (46) 40 (61) 59 (102)
f18 440 (311) 501 (659) 730 (549) 137 (104) 265 (182) 134 (205)
f19 355 (350) 386 (357) 288 (180) 117 (50) 382 (379) 86 (53)
f20 105 (71) 60 (50) 101 (104) 49 (89) 49 (56) 35 (44)
f21 15 (18) 7.1 (5) 12 (8) 14 (21) 13 (16) 18 (20)
f22 38 (62) 46 (65) 54 (55) 57 (68) 34 (30) 42 (92)
f23 49 (79) 4.8 (3) 16 (13) 6.4 (6) 5.8 (2) 7.5 (11)
f24 ∞ ∞ 60 (60) 62 (56) ∞ ∞

Σ best 1 6 1 3 3 12

The CMA-ES implementations were downloaded from Hansen’s
homepage [6]. The exact versions of used packages, as extracted
from the source code, are as follows: Java – “0.99.40”, C – “3.20.00.beta”,
Python purecma – “3.0.0”, Python – “2.6.0, revision 4423”, Matlab –
“3.33.integer”. The Python implementation includes two variants
of Bound Constraint Handling Methods (BCHMs): the coordinate
transformation version [7] andweighted quadratic penalty [8]. Both
versions were included in the experiments because the C implemen-
tation of CMA-ES uses the transformation, and the Matlab version
uses the penalty approach. The Java version uses resampling and
the simplified CMA-ES version comes without constraint handling.
To be able to use it the implementation was enriched by a simple
additive quadratic penalty. More information on BCHMs can be
found in [4]. The heuristic of setting population sizes µ and λ was
identical in all considered implementations so it was left untouched.

Since the aim of the paper is to check whether there are differ-
ences between implementations, the experiments were performed
in five dimensions only.

3 RESULTS AND DISCUSSION
The aRTs divided by the best aRT measured during BBOB-2009
for all functions at the target error level 10−7 are shown in Table
1. It can be observed, that there are clear differences between the
outcomes of all official implementations. The experiments showed
that the best is the Python implementation with the weighted qua-
dratic penalty (Py. sq. pen.), whereas the same implementation with
default bound constraint handling (Python) is in joint third place
with the Python simple (Py. sim.) implementation. The Java imple-
mentation is in second place. The Matlab and C versions are in last
place.

The results of the official Python implementation coupled with
two different BCHMs showed that BCHMs are a strong source of

differences in the results. To further investigate the sources of the
differences, implementations with the same BCHM were compared
in pairs. Still, there were strong differences, i.e., for methods with
a BCHM based on penalty (Matlab and appropriately configured
Python), strong statistically significant differences were detected
by COCO for functions 2, 8, 10, 11, 13, 14; and when comparing
methods based on transformations of the parameters (Python and
C), statistically significant differences were found for functions 2, 5,
10, 11, 13, 14, 23. These findings show that besides bound constraint
handling, there are other differences between implementations that
result in statistically significant differences in the results.

The inspection of the source code of the implementations re-
veals that more recent implementations implement more recent
(improved) concepts of the algorithm. Other sources of differences
are hidden in the auxiliary code responsible for the detection of
numerical instabilities and in the stopping criterion connected with
detection of the inability of further improvement.

4 CONCLUSIONS
The outcomes of the official CMA-ES implementations differ sub-
stantially. Therefore, it is important which of them is used. To
make an experiment reproducible, experimenters should report the
name and version of the used implementation. To make valuable
conclusions, the authors should use the most up-to-date CMA-ES
implementation, i.e. the Python implementation. The default bound
constraint handling cannot be perceived as absolutely the best.

The observed differences will probably be much larger in a CMA-
ES typical usage scenario, where practitioners from other fields do
not set the maximal number of iterations or step size σ .

REFERENCES
[1] [n. d.]. COCO (COmparing Continuous Optimisers). http://coco.gforge.inria.fr/
[2] Richard S. Barr, Bruce L. Golden, James P. Kelly, Mauricio G. C. Resende, and

William R. Stewart. 1995. Designing and reporting on computational experiments
with heuristic methods. Journal of Heuristics 1, 1 (01 Sep 1995), 9–32. https:
//doi.org/10.1007/BF02430363

[3] Rafał Biedrzycki. 2018. Differences that make a difference: comparing implemen-
tations of selected optimization algorithms in R language. In Proc.SPIE, Vol. 10808.
10808 – 10808 – 12. https://doi.org/10.1117/12.2501381

[4] Rafał Biedrzycki, Jarosław Arabas, and Dariusz Jagodziński. 2018. Bound con-
straints handling in Differential Evolution: An experimental study. Swarm and
Evolutionary Computation (2018). https://doi.org/10.1016/j.swevo.2018.10.004

[5] Agoston E Eiben and Márk Jelasity. 2002. A critical note on experimental research
methodology in EC. In 2002 IEEE Congress on Evolutionary Computation. IEEE,
582–587.

[6] Nikolaus Hansen. [n. d.]. The CMA Evolution Strategy. ([n. d.]). Retrieved Oct
14, 2018 from http://cma.gforge.inria.fr/cmaesintro.html

[7] Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial. CoRR
abs/1604.00772 (2016). arXiv:1604.00772

[8] Nikolaus Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos. 2009.
A Method for Handling Uncertainty in Evolutionary Optimization With an Ap-
plication to Feedback Control of Combustion. IEEE Transactions on Evolutionary
Computation 13, 1 (Feb 2009), 180–197. https://doi.org/10.1109/TEVC.2008.924423

[9] Nikolaus Hansen and A. Ostermeier. 2001. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation 9, 2 (2001), 159–195.
https://doi.org/10.1162/106365601750190398

[10] Rainer Storn and Kenneth Price. 1995. Differential Evolution - A simple and
efficient adaptive scheme for global optimization over continuous spaces. Technical
Report. TR-95-012, ICSI.

[11] Matej Črepinšek, Shih-Hsi Liu, andMarjanMernik. 2014. Replication and compar-
ison of computational experiments in applied evolutionary computing: Common
pitfalls and guidelines to avoid them. Applied Soft Computing 19 (2014), 161 –
170. https://doi.org/10.1016/j.asoc.2014.02.009

248

http://coco.gforge.inria.fr/
https://doi.org/10.1007/BF02430363
https://doi.org/10.1007/BF02430363
https://doi.org/10.1117/12.2501381
https://doi.org/10.1016/j.swevo.2018.10.004
http://cma.gforge.inria.fr/cmaesintro.html
http://arxiv.org/abs/1604.00772
https://doi.org/10.1109/TEVC.2008.924423
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1016/j.asoc.2014.02.009

	Abstract
	1 Introduction
	2 Experimental setup
	3 Results and discussion
	4 Conclusions
	References

