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ABSTRACT

Swarm Intelligence (SI) is a behavior, used first by Beni and
Wang, corresponding to a system working with single and
self-organized agents, interacting the ones with each other.
This operating concept is implemented in many algorithms.
Developed by Kennedy, Eberhart and Shi, Particle Swarm
Optimization (PSO) is one of them. Its behavior is based
on the movements of birds swarm, and its effectiveness, for
looking for the optimal solution of a given problem, is well
established. Nevertheless, PSO is known for its weakness in
local search. Moreover, the behavior of PSO strongly depends
on internal parameters settings. In order to address these
problems, we propose a new type of self-adaptive Quantum
PSO (QPSO), called QUAntum Particle Swarm Optimiza-
tion (QUAPSO), based on quantum superposition to set
the velocity parameters and hybridized with a Kangaroo
Algorithm in order to optimize its efficiency in local search.
QUAPSO was compared with five known algorithms from the
literature (classical PSO, Kangaroo Algorithm, Simulated
Annealing Particle Swarm Optimization, Bat Algorithm and
Simulated Annealing Gaussian Bat Algorithm) on a set of 19
test functions. The results show that QUAPSO outperforms
the competing algorithms.
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1 INTRODUCTION

Particle Swarm Optimization (PSO) is a population-based
metaheuristic, belonging to the class of Swarm Intelligence
(SI) algorithms, developed the first time by Kennedy and
Eberhart [3]. The swarm is composed by N particles whose
movement is influenced by three components:

(1) An inertial component, memory of the last movement,
that encourages each particle to continue its progression
in the current direction, modulated by w.

(2) A cognitive component, that encourages each particle
to follow its best-known position, modulated by C'1.

(3) A sociologic component, that encourages each particle
to follow the best particle in a chosen neighborhood,
modulated by C2.

The effectiveness of PSO is no longer to demonstrate: it is
very efficient for global search and does not require that the
optimization problem be differentiable. Nevertheless, PSO is
not strong for local search and a local minimum can trap the
particles of the swarm when there is stagnation of the best
particle. Moreover, a poor choice of its parameters can in-
duce premature convergence of PSO, producing sub-optimal
solutions quite far from the best solution. In order to solve
problems due to premature convergence and weakness for lo-
cal search of PSO, we propose a new variant of PSO inspired
by quantum superposition (the property of a quantum parti-
cle to be in several quantum states) and Kangaroo Algorithm,
called QUAntum Particle Swarm Optimization (QUAPSO).

2 ALGORITHM PROPOSED

In QUAPSO, each particle of the swarm can have several
velocity parameters, randomly selected among a range of
values given in Table 1. The algorithm will set particle’s
position to the best solution given by the several states tested.
The movement of a particle is still guided by the classical
PSO equations, but QUAPSO allows the particles to visit
multiple solutions at each iteration, and selects the best one.
QUAPSO requires to set a new parameter Ne¢, corresponding
to the number of parameter combinations tested but the
velocity parameters are no longer to be set, which simplifies
the setting of the algorithm.
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Table 1: Range of the parameters’ values selected

Parameter Minimum value Maximum value
w 0 1
C1 0 2
C2 0 2
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Figure 1: New neighborhood topology - each particle is rep-
resented by a red point and a number corresponding to the
quality of its solution, the black arrows represent the socio-
logic component of the movements of the particles

Besides, the swarm is divided in two sub-swarms, the
second is focused on looking for a better solution by the
Kangaroo method into a hypersphere around the best solution
found. When a test fails, hypersphere radius increases by
10%, otherwise, it decreases by 10%. This mechanism helps
QUAPSO to refine the best solution found by the first sub-
swarm.

Concerning the neighborhood topology, we developed two
versions of QUAPSO. The first one (QUAPSO.1) uses a classi-
cal star topology, while QUAPSO.2 uses a new neighborhood
topology: the first sub-swarm is sorted by the values given by
the function fitness of each particle. Then, each particle will
follow its own best particle in its sociologic neighborhood.
This behavior is illustrated by Figure 1. Moreover, 3 "special-
ized particles" from the first sub-swarm are focused on the
best particle of the swarm.

3 NUMERICAL EXPERIMENTS

We have tested QUAPSO on a set of 19 benchmark func-
tions, selected from the same library [2]. The performance
of QUAPSO was also compared with that of five competing
algorithms: Kangaroo Algorithm (KA), Particle Swarm Opti-
mization (PSO), Simulated Annealing Particle Swarm Opti-
mization (SAPSO), Bat Algorithm (BA) and Simulated An-
nealing Gaussian Bat Algorithm (SAGBA). Each algorithm
was executed 50 times and each run ends when the stopping
criterion, defined for 80000 visited solutions, is reached. Re-
garding the settings of the algorithms, the swarm’s size of
each population-based algorithm is 40, and the size of the
sub-swarms, for QUAPSO.1 and QUAPSO.2, is 20. The num-
ber of attempts for KA, and states tested for QUAPSO.1 and
QUAPSO.2 is 5. The neighborhood topology used by PSO

and QUAPSO.1 is a star topology, while that of QUAPSO.2
is the new neighborhood topology described earlier in this

article.
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Table 2: Average performance of the competing algorithms.
“-” means the algorithm did not find the optimal solution
and best results in bold allow to identify the most efficient
algorithm on each function.

Functions D PSO KA BA SAPSO SAGBA  QUAPSO.1 QUAPSO.2
Ackley 2 4.20E-02 3.79E-02 1.80E-03 1.57E-03 6.19E-04 2.62E-04 1.27E-05
Beale 2 4.41E-05 7.62E-06  2.28E-04 1.41E-08 3.59E-10 1.67E-11
Bohachevsky 2 3.34E-02 4.02E-02 1.47E-06 2.27E-05 1.16E-08 2.46E-06 5.88E-08
Booth 2 8.84E-05 4.56E-05 08 - 9.83E-07 3.50E-09 8.04E-11
Branin 2 3.98E-01  8.02E+00 7.72E-01 - 3.98E-01 3.98E-01 3.98E-01
Dixon & Price 25 5.58E-05. 1.08E+03 4.06E-09 1.39E-10
Goldstein & Price 2 3.00E4+00  3.00E400  3.04E-+00 - 3.00E+00 3.00E+00 3.00E+00
Griewank 2 1.12E-02 9.92E-03 1.44E-10 5.78E-08 3.64E-08 4.18E-03 1.78E-03
Hartmann 3 -3.75E400 -2.37E-01 -3.86E+00 -3.77E+00 -3.86E+00 -3.86E-+00 -3.86E400
Hump 2 2.41E-05 2.75E-05  5.06E-04 5.02E-08 6.15E-10 4.82E-08 4.65E-08
Levy 2 4.36E-06 8.88E-01 2.53E-09 3.57TE-06 1.76E-10 3.18E-10 4.63E-12
Matyas 2 2.28E-06  2.05E+00  3.03E-10 2.51E-06 3.79E-09 1.24E-10 1.47E-11
Powell 24 3.14E+402  1.36E+01 - - - 1.15E-02 5.36E-03
Rastrigin 2 1.12E-03 5.12E-02  5.60E-05 1.94E-04 1.58E-07 5.74E-08 9.95E-02
Rosenbrock 2 2.54E-04 2.51E-07  7.87E-04 3.54E-03 4.68E-06 6.47E-09 6.77E-10
Shubert 2 -1.87E+02 -8.11E-03 -1.87E+02 -1.87E+02  -1.87E+02 -1.87E+02
Sphere 30 1.07E401 6.37E+01 1.92E-003  4.86E-02 4.61E-05 1.03E-05 1.65E-06
Sum Squares 20 3.42E+01  4.51E+02 - - 3.60E-04 7.06E-05 1.35E-05
Zakharov 2 4.75E-05 1.80E-05  9.23E-09 8.78E-03 6.12E-10 9.60E-10 1.45E-11

Table 2 provides the average performance for PSO, KA,
SAPSO, SAGBA and the two variants of QUAPSO on the
19 test functions. For BA, SAPSO and SAGBA algorithms,
the results correspond directly to those published by the
authors on this set of 19 test functions [1]. The results show
that both QUAPSO.1 and QUAPSO.2 are better than KA,
PSO and SAPSO on all test functions, except Griewank and
Rastrigin test functions. Moreover, QUAPSO.2 outperforms
QUAPSO.1 on 18 test functions. Concerning the other com-
peting algorithms, QUAPSO.1 is defeated against BA and
SAGBA on 5 test functions, and QUAPSO.2 still remains
defeated on 4 functions. The evaluated algorithms belong-
ing to the class of stochastic algorithms, we also carried out
3 different statistical tests, when the statistical data were
provided by the authors. First, we performed a Level test,
to determine the heteroscedasticity of data. If heteroscedas-
ticity is confirmed, results have different variabilities and
we performed a Kolmogorov-Smirnov test, otherwise, we
used a Wilcoxon-Mann-Whitney test. Thereby, we studied
the results comparing performances of the two versions of
QUAPSO.1, KA and PSO. QUAPSO.1’s performances were
statistically significant on every comparison, then we com-
pared and studied the results of the two variants of QUAPSO.
The p-values computed between QUAPSO.1 and QUAPSO.2
show that all differences measured are statistically signifi-
cant. That confirms the efficiency of the new neighborhood
implemented. However, there is still room for improvement
by analysing, for example, the effects of the settings.
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