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ABSTRACT
Transfer learning attracts increasing attention in many fields in
recent years. However, studies on transfer learning for symbolic re-
gression are still rare. This work proposes a new instance weighting
framework for genetic programming (GP) based symbolic regres-
sion for transfer learning. The key idea is to use differential evolu-
tion to search for optimal weights during the evolutionary process
of GP, which helps GP identify and learn from more useful source
domain instances and eliminate the effort of less useful source do-
main instances. The results show that the proposedmethod achieves
notably better cross-domain generalisation performance in a very
stable way than GP without the instance weighting framework and
support vector regression.
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1 INTRODUCTION
Transfer learning is a learning framework in machine learning
with the task of improving the learning performance in the target
domain by utilising the knowledge gained from different but related
source domain(s). The rationale behind transfer learning is that
human beings can utilise the acquired knowledge to solve new but
similar problems effectively. Let Ps (Ys ,Xs ) and Pt (Yt ,Xt ) denote
the true underlying distribution of the source and target domains,
where Ys and Yt are the outputs in the source and target domain,
respectively, and Xs and Xt are the corresponding input variables.
The general idea of transfer learning is to utilise Ps (Ys ,Xs ) to better
approximate Pt (Yt ,Xt ). In recent years, studies on transfer learning
have been conducted in many fields, e.g. reinforcement learning
and classification [2].

Genetic Programming (GP) based symbolic regression (GPSR)
[1] learns the relationship between the independent variables and
dependent output(s) and expresses this relationship inmathematical
models. GP has the trend of generating overcomplex models that
overfit the training data. This is known as the generalisation issue in
GP. In the transfer learning scenario, it would be more difficult for
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GP to learn the regression models to generalise well across domains,
where the distributions of the data in these domains are different.
Moreover, compared with the many studies in some other fields,
research on transfer learning in GPSR is still rare.

Goals: This work aims to develop an instance weighting frame-
work for GPSR for transfer learning to improve the cross-domain
generalisation ability of the evolved regression model. The new
instance weighting framework searches for the optimal weights of
the source domain instances considering the performance of GP in-
dividuals, and it is expected to effectively correcting the difference
between the marginal distributions Pt (Xt ) and Ps (Xs ).

2 THE PROPOSED METHOD
2.1 The Overall Framework of TLGP
This work proposes a new instance weighting framework for GPSR
for transfer learning. GP equipped with the new framework is
named transfer learning GP (TLGP). The overall structure of TLGP
is shown in Figure 1.

Figure 1 shows that, at every generation, GP individuals in TLGP
learn from m sets of weighted source domain instances, i.e. the
source domain instances weighted bym weight vectors from an op-
timisation method. A state-of-the-art version of different evolution,
Self-adaptive DE (SaDE) [3] is used in this work. Each individual
in SaDE, i.e. a weight vector, has n elements, which are the corre-
sponding weights of the n source domain instances and are used
to weight the learning error of the GP models/individuals on these
instances. The GP individual that has the smallest error under one
weight vector will be selected and exposed to the target training
instances. In totally,m top GP individuals are selected. The error
values of these models on the target domain will be treated as the
fitness values of them weight vectors in SaDE. As the evolution-
ary process approaching, GP individuals in TLGP are evolved to
extract more helpful knowledge from the better weighted source
domain instances. Meanwhile, the DE individuals are evolved to-
wards providing a set of better weighted source domain data to
train GP individuals that can obtain a smaller training error on the
target training data. From generation to generation, the population
of weight vectors keeps on evolving along with the evolution of
models in GP. In this way, the proposed weighting framework is
expected to correct the marginal distribution difference between
Ps (X ) and Pt (X ) more effectively.

2.2 The Evaluation Process in TLGP
TLGP uses two fitness functions for the evaluation and re-evaluation
processes. In the evaluation process, the fitness of a model in TLGP
is a vector havingm dimensions, wherem is the number of weight
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Figure 1: Transfer Learning Framework of TLGP.

vectors returned by SaDE. Each dimension is the weighted error of
the individual on the source domain data under one specific weight
vector. Weighted mean squared error (WMSE) in Equation (1), is
employed as the fitness function for evaluation process.

f vk = WMSE =
n∑
i=1

wi · (fi − yi )2, (k ∈ {1, 2, . . . ,m }) (1)

where n is the number of the source domain instances, wi is the
weight of the ith instance, fi is the output of the candidate individ-
ual/model and yi is the target output of the ith instance. The fitness
vector of each GP individual consists of values from f v1 to f vm .

Givenmweight vectors, TLGP selectsmmodels for re-evaluation
where the ith models has the smallest f vi . The errors (MSE) of these
m models on the target training domain are measured. This value
is also used as the fitness of the the corresponding DE individual.

3 EXPERIMENTS AND RESULTS
The proposed method is compared with three benchmark methods,
i.e. support vector regression (SVR) and two GP methods,GP-Tar
and GP-Comb, which are GP methods learning from the target train-
ing instances only and a combination of the source and the target
domain (training) instances, respectively. For an easy comparison,
the relative square error (RSE = ∑n

i=1
(fi−yi )2

(ȳ−yi )2 ) on the target train-
ing data and the target test data are reported and compared. The
methods are tested on one synthetic dataset, i.e. the Friedman #1
(Friedman) and two real-world datasets Kin and Student. The val-
ues of coefficients in Friedman are drawn from normal distribution
with different ranges for the source and the target domains. The
Kin dataset is taken from the Delve dataset repositories where “nm"
data and “nh" data is used as the source and the target data, respec-
tively. For the student dataset, the Mathematical performance and
the Portuguese language data is used as the source and the target
data, respectively. 50 independent runs have been conducted for
each GP method. The Wilcoxon test, with a significance level of
0.05 and Z-test, are used to for the comparison between GP and
SVR.

Results: Table 1 shows that TLGP has worse training performance
than GP-Tar on all the target training data, while it has better train-
ing performance than GP-Comb and SVR on Student and Friedman.

Table 1: The Training and Test Performance, Program Size
and Computational Time

Method Training Test Pro-Size Time
RSE RSE #Node Seconds

Median(SD) Median(SD) Median(SD) Median(SD)

Kin
SVR 0.435 0.747 N/A N/A

GP-Tar 0.62(0.09) 0.81(0.05) 108.47(53) 16.98(8.66)
GP-Comb 0.75(0.08) 0.79(0.06) 103.73(50) 190.19(8.44)
TLGP 2.44(0.16) 0.71(0.07) 81.07(10) 710.65(417.94)

Student
SVR 0.11 0.44 N/A N/A

GP-Tar 0.03(0.02) 0.47(0.14) 144.73(79) 1.68(1.06)
GP-Comb 0.38(0.01) 0.57(0.01) 135.47(53) 23.56(11.28)
TLGP 0.05(4.21E-3) 0.2(0.04) 99.07(33) 71.43(53.31)

Friedman
SVR 176.71 1.053 N/A N/A

GP-Tar 0.14(0.03) 0.65(0.06) 185.27(85) 2.54(1.09)
GP-Comb0.96(3.24E-3)1.01(4.95E-3) 173.33(107) 45.61(27.12
TLGP 1.95(0.11) 0.29(0.04) 99.27(41) 124.13(95.05)

All the differences between the training performance are signifi-
cant. The results on the target training data are not unexpected.
In TLGP, the target training instances are involved in the training
process to select models and evaluate the weights of the source
domain instances. Compared with GP-Tar where these instances
are directly involved in the training regression models, TLGP could
lead to less effective training fitting.

Considering the generalisation performance on the target test
sets, which is a more important criterion to measure the transfer
learning performance, the proposed method TLGP is definitely the
winner. It has much smaller test errors than the other three method
on all the test sets. TLGP has a smaller RSE value than GP-Tar,
which indicates that TLGP is able to transfer useful knowledge to
improve the generalisation performance of GP. But it is not the
case for GP-Comb and SVR. On Friedman where the distribution
on the source and target domain is more different, GP-Comb and
SVR have much worse test performance than GP-Tar, but TLGP
can still outperform GP-Tar, which confirms the effective transfer
learning ability of the new instance weighting framework.

It is clear that TLGP generally evolves the simplest regression
models, which are much smaller than the models evolved by the
other two GP methods in all the cases. The simpler models in
TLGP are due to the implicit instance sampling performed by DE
to search for the optimal weights. In this way, the evolutionary
process generally learns from dynamic while simpler training sets.
Considering the computational cost, TLGP is the most expensive
method. The additional effort on searching for the weight vector
and themore complex evaluations and selection processes all lead to
an increase in the computational cost. However, the computational
time of TLGP is generally only 2-3 timesmore than that of GP-Comb
and it is still affordable since a GP run takes only several minutes.
Clearly, since TLGP can significantly improve the generalisation
performance and find/evolvemuch simplermodels, such an increase
in training time is a small price to pay.
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