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ABSTRACT
Parallel genetic algorithms (PGAs) can be used to accelerate opti-
mization by exploiting large-scale computational resources. In this
work, we describe a PGA framework for evolving spiking neural
networks (SNNs) for neuromorphic hardware implementation. The
PGA framework is based on an islands model with migration. We
show that using this framework, better SNNs for neuromorphic
systems can be evolved faster.
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1 INTRODUCTION
Parallel genetic algorithms have been a part of the genetic algorithm
(GA) landscape for decades as a way to accelerate optimization by
exploiting large-scale computational resources [1, 4]. One use case
of GAs in recent years is for neural network optimization, also called
neuroevolution [2]. An interesting class of neural networks, spiking
neural networks (SNNs), have risen in popularity, partly due to their
use in low-power neuromorphic systems [8]. GAs provide an attrac-
tive option for training SNNs for neuromorphic deployment for a
variety of reasons, including the ability to train for a variety of appli-
cation types, easily operate within hardware constraints, and easily
utilize hardware in-the-loop [7]. However, training for SNNs for
neuromorphic deployment is computationally difficult and though
basic GA approaches can discover solutions to simple problems
in a reasonable amount of time, more complex tasks require more
complex algorithmic approaches. To help address this issue, in this
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work, we build a parallel GA framework based on islands with
migration around an existing neuromorphic training framework
called EONS. We demonstrate that the approach outperforms the
simple parallel technique of islands with no migration.

2 EONS
We implement our parallel GA method around Evolutionary Opti-
mization for Neuromorphic Systems (EONS), a method for design-
ing SNNs for neuromorphic systems. Built on the method described
in [7], EONS is a training algorithm integrated into the TENNLab
neuromorphic software framework [6], which supports a variety of
neuromorphic implementations and applications, such as classifica-
tion and control tasks. EONS uses a network graph as the genome
representation and uses custom reproduction operators, including
crossover, merge, and mutation operations. Each EONS executable
is compiled with a particular neuromorphic implementation and
application. Here, we use the DANNA2 neuromorphic implementa-
tion [5], which is a digital spiking implementation that can either be
implemented on a field programmable gate array (FPGA) or fabri-
cated in a custom chip implementation. The application that we use
is pole balancing problem, a canonical task for neuroevolution [3].
We use the version of the task that does not provide the velocities
of the cart and pole to the SNN as input.

3 ISLAND MODEL WITH MIGRATION
Our islands framework implementation is written in C++ and uses
MPI for communication. We assume that at the beginning of exe-
cution we are allocated C cores and P = C processes are created.
One process is the island manager (IM), and the remaining P − 1
processes are the island workers (IWs). The IM begins by creat-
ing a list of EONS commands to execute, each of which is sent
to an IW. Each IW waits until a command is received and then
forks a child process that executes the EONS command. The IW
collects information about how the EONS process is performing via
a pipe. Intermittently, the IW sends a status update about the EONS
process’s progress to the IM. This message contains the current
generation for that IW’s EONS process and the current best fitness
value. If the IW has not previously sent a network to the IM or if a
new best network has been evolved since the last message, the IW
sends the new network to be integrated into the IM’s migrant pool.

The IW then waits to receive one of the following commands
from the IM:migrant, indicating that a migrant network will be
sent to the IW; go on, indicating that the EONS process should
continue uninterrupted; and new EO, indicating that the IM has
sent a new command to be executed, so the current EONS process
should be killed. If the IW receives a migrant from the IM, it writes
that migrant network to a file, which the EONS process integrates
into its population. If the IM directs the IW to create a new EONS
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process, the IW kills its current EONS process and then creates a
new one.

The IM decides which command to send to the IW based on
previous status updates from the IW. First, the IM checks the new
status to see if it includes a migrant network. If there is a new
migrant, the IM attempts to integrate the migrant into its migrant
pool. If the migrant pool is full, the new migrant is added into the
pool and the worst performing member of the pool is removed.
The IM then decides whether the IW’s EONS process should be
killed. The IM tracks the fitness scores from the status updates
for each island. If the fitness score has stagnated over multiple
status updates, then the IM directs the IW to kill the existing EONS
process and gives it a new EONS command to execute. Otherwise,
the IM selects a migrant from the IM’s migrant pool and sends it to
the IW. We construct the eligible migrant pool for the IW in order
to limit duplicated fitness evaluations. Migrants in the migrant pool
are ineligible if they came from that IW or they have already been
sent as a migrant to that IW. If there are no eligible migrants, we
send the “go on" signal to the IW. Otherwise, we randomly select a
migrant from the networks in the eligible migrant pool to send to
the IW. Then, the IM waits for status updates from other IWs.

4 RESULTS
We ran 10 tests with migration and 10 sets without migration on 16,
64, 256, and 1024 cores. These tests are performed for the DANNA2
neuromorphic implementation on the pole balancing with no ve-
locities task. In this task, the maximum fitness value of 15,000
corresponds to a DANNA2 SNN that is capable of balancing the
pole on the cart for five minutes from six starting conditions. For
islands without migration, we do not track the performance of each
EONS population and replace those that stagnate. We demonstrate
that islands with migration performs better than simply running
many parallel EONS processes and taking the best network (i.e.,
islands without migration). Figure 1 shows the results for islands
with and without migration on ten tests for each. For each of these
tests, the same random number generator seeds were used to create
the initial EONS populations on each island, so differences in per-
formance are not a consequence of differences in initial populations.
Figure 1 shows that for both islands with and without migration, a
higher number of cores results in better resulting networks. This is
not surprising because increasing the number of cores effectively
increases the overall population size in both cases, resulting in more
exploration of the solution space. The differences in performance
across the ten runs for each parameter setting are due to the differ-
ent initial populations. We can also see in Figure 1 that, on average,
islands with migration outperform islands without migration. This
difference in performance indicates that by allowing for migration
between islands, better solutions can be shared across populations.
This means that islands with populations that are not performing
well will eventually receive better performing migrants from other
islands, which introduce more diversity into the island population
and lead to faster evolution as discussed in [9].

5 DISCUSSION AND CONCLUSION
We show in this work that islands with migration consistently
outperforms islands without migration. That is, better solutions are
reached in the same amount of time with the same computational

Figure 1: Differences in performance between islands with
migration (shown in the first set of boxes, mean value plot-
ted in blue) and islands withoutmigration (shown in the sec-
ond set of boxes, mean value plotted in orange).

resources if migration is allowed between islands. The impact of
this work is that, using the islands with migration framework, we
can now train SNNs for neuromorphic systems to better solutions
in the same amount of time using the same computational resources.
This will enable the neuromorphic community to explore training
SNNs for more complex tasks.
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